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1 Introduction

Typical metrics for execution performance of trading algorithms in US equities are fundamentally based on
price. The trade prices achieved by the algorithm are compared to various benchmarks, such as volume-
weighted average price (VWAP) and arrival price. Understanding and modeling market impact, whether
for pre-trade predictions or for after-the-fact analysis also demands grappling with the dynamics of price.
However, price data is incredibly noisy. The price is changing rapidly at all times, and due to the regular and
significant variance in price it is challenging to figure out what drives this change. This poses problems for
all of the above tasks, and careless scientists are bound to see relationships and structures that are merely
due to random chance. In order to enable robust data science in this domain, we need to cut away at the
unwieldy level of noise in price data as much as we can.

We made some first steps in this direction when releasing our initial design for Distilled Impact [1]. This
paper laid the conceptual framework for the reduction of market noise in price data for US equities and
tested the framework with a few basic models. Here, we will review this framework and further develop it,
focusing more extensively on models and proxy symbol selection.

Summary In this paper, we quickly review the goal of Distilled Impact as described in [1], and provide
additional motivation for pursuing this research path. Then we pick up where [1] left off, and consider a
larger collection of distilled impact models and model selection procedures.

The models we consider are linear models with features given by relative price changes of a collection of
ETFs, larger than the collection considered in [1]. We consider several different methods of feature selection
and ultimately conclude that the model that consistently performs better than any others is a simple model
that simply consists of a single feature, the price changes of the ETF with the strongest correlation with the
symbol in question.

2 The Distilled Impact Framework

The broad goal of our Distilled Impact research agenda is to understand and separate the drivers of price
change of a symbol from within the tick data from that symbol and from elsewhere in the stock market. This
will have implications for our algorithm design, as an effective distilled impact tool will allow us to more
effectively determine how our actions influence the market. In addition, this will be helpful for transaction
cost analysis, since good distillation of market forces may help us grade our performance more effectively
than standard metrics like slippage vs. VWAP and slippage vs. arrival (see [1] for more information).

The basic price modeling framework laid out in [1] for a stock symbol S during time period t (usually
hours, days, or 10 minutes) is given by the following equation:

M(S, t) = A(S, t) +O(t) + C(S, t) +N(S, t). (1)

Here,

1. M(S, t) is the relative change in the price of a stock over the time period t. This quantity will either
be defined as

M(S, T ) :=
L(S, T ) − F (S, T )

F (S, T )
(2)
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or

M(S, T ) :=
VWAP (S, T ) − F (S, T )

F (S, T )
(3)

where L(S, T ) is the last trade price of S during t, F (S, T ) is the last trade price of S during t, and
VWAP (S, t) is the market volume-weighted average price for S over all of t. We will usually use
definition (2), but will specify whenever necessary.

2. A(S, t) is the impact on M due to activity in the symbol S over T . This is a challenging quantity to
estimate on its own, so we will seek to quantify it in terms of the other terms in (1).

3. O(t) denotes the overall market movement over the time period t.

4. C(S, t) denotes the impact on M(S, t) arising from activity in areas of the market outside of the market
for S. Much of our work in this paper will be focused on building better models for this term.

5. N(S, t) is a noise term that captures the extent to which all the other terms on the right side of (1)
fail to together approximate M(S, t). In particular, good models of A, O, and T have smaller values
of N .

Our goal is to build tools that allow us to approximate A, O, and C, from historical market data. Since
M is clearly defined by market data we can obtain information about a missing term if we have good models
for the rest of the terms and N(S, t) is on average small. As indicated above, we will set A aside and work
to determine good models for O and C, in hopes that we can use this information to better understand A.

Before we can begin thinking about building models for these terms, we need to understand how the
models ought to be graded. Clearly we wish to minimize the size of the N term, but we will need a way to
grade our model without having to approximate A. To do this, we will simply seek to minimize the size of
the expected sum of A and N . Since A does influence M , there will be limits to the extent to which we can
minimize this quantity. Nevertheless it will be a useful grade for how accurate our representations of O and
C are. Our metric will be determined by the square sum of N and A, taken for a random dollar traded in
the market for the set of trading periods in the “orders” (denoted by τ) in the testing set:∑

τ

(N(S, t) +A(S, t))
2 ·NV =

∑
τ

(M(S, t) −O(t) − C(S, t))
2 ·NV (4)

Here NV denotes the total notional value traded in symbol S over the time period t. All the terms on the
right side of (4) are either measurable or good candidates for modeling.

In [1], we modeled O(t) and C(S, t) as linear combinations
∑
i wi(S)ci(t) of other stock prices ci(t) during

the time period t. We tested a few basic models, and settled on a combination of ETFs–SPY, XLE, XLF,
XLK, XLV, and VB–as our first pass approximation of O(t) + C(S, t). As a linear model on external prices
is nicely simple and likely still underutilized, we will stick with that framework throughout this paper.

3 An Alternative Description

We can also rephrase this problem in a different light that better relates the program to transaction cost
analysis and highlights some of the issues with causal directionality that we will discuss later.

When we look to grade ourselves on our trade execution, we wish to compare our volume-weighted
execution price against some benchmark. As described in [1], most of the common metrics have obvious
flaws. In particular, slippage vs. VWAP is a somewhat circular metric, as we are influencing the quantity
that we are grading ourselves against. The slippage vs. arrival metric avoids this self-referential problem,
but it can be incredibly noisy, as our execution prices will be subject to external market forces that continue
beyond the time of arrival.

In a perfect world, we would be able to grade ourselves against the volume-weighted average price of all
the trades in the specified symbol and time period in a world where we were not present.

We cannot determine exactly what this price would be, but the framework described in Section 2 gives
us a method of approximating it. In particular, if we carefully choose proxy terms ci that we are unable or
unlikely to influence significantly with our trading, then these terms can be used in a prediction model for
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the VWAP price in our absence that can be trained on historical market data. Borrowing from Section 2,
we can take this model as

O(t) + C(S, t).

and grade it using the loss function in (4). In particular, for a randomly chosen dollar traded in our historical
dataset, we want to minimize the expected square difference between the observed price and our predicted
price.

This poses the problem as a standard machine learning model, with a slight twist. We want to choose
features and models that allow us to minimize a squared-error loss function, but we should be careful to not
use features that could be influenced too much by our own trading.

To illustrate with a specific example, consider the task of building a model for the price of Southwest
Airlines during a 10-minute interval using data from other symbols. We might use the price of Delta Airlines
to predict this value, and this would likely allow us to reduce the loss in (4) more effectively than we could
with a model without any other airline stocks. However, such a model would not serve well when, during
transaction cost analysis, we seek to understand the price of Southwest if we were not present. It is quite
possible that our trading activity in Southwest would increase the price of both Southwest and Delta, and
that our model would be muddied by our own activity. This is similar to the problem with the slippage vs.
VWAP metric, although perhaps on a lesser scale.

To avoid this problem as best as possible, we will work to be parsimonious with our choice of symbols in
our model, and we will be willing to give up some loss reduction from (4) for more confidence in a lack of
causal contamination.

4 A New Distilled Impact Model

The set of possible models encapsulated by (1) is incredibly large. In our attempt to predict M(S, t), we
could include many different features from concurrent and historical prices and sizes from both trade and
quote data. The only data that is out-of-bounds in the prediction of M(S, t) is the trade and quote data
for S in the interval t (assuming we want to avoid the extent of the circularity introduced by the VWAP
benchmark).

Rather than performing an exhaustive exploration of all kinds of these features, we will build out carefully
from what we know to work, and then once we have found a suitable model, remove any complexity that is
not absolutely necessary.

In [1], our winning model for C(S, t) and O(t) included a linear combination of six concurrent relative
ETF prices, with coefficients determined per symbol. We will expand this by simply allowing for more
symbols in the model.

The choice of including new symbols’ relative price changes in the model seems like a simple and obvious
one, but the question of which symbols to include for S is a much more difficult problem. We were already
nearing the possibility of overfitting with only six ETFs in our model, and an attempt to simply throw more
symbols into the mix would likely result in a statistical disaster. Therefore, if we are going to improve on
the original model, we need a process for customizing the proxy symbol set (i.e. the symbols used in a linear
combination) for each symbol S.

The process for choosing a small subset of a large feature set in a linear model is known in the field of
statistical learning as “subset selection” (see [2]). There are many techniques for going about this: forward
step-wise regression, forward stag-ewise regression, lasso regression, least angle regression, etc. On our first
pass, we focused on a straightforward subset selection method–a variant of forward step-wise and forward
stage-wise regression–that seemed reasonable for our purposes and was easy to implement.

For our selection procedure we wanted to include all the best proxies for M(S, t) from our proxy set, but
we could not possibly search over all possible subsets of our proxy set with any reasonable computational
efficiency. Instead, our subset selection method proceeds as follows. We first choose a set of potential proxy
symbols that can be used in the model for M(S, t) for each S. Then, for each symbol S, we go through a
step-wise procedure that greedily selects n new symbols to add to the model, and stops after r rounds for a
total of n · r new symbols in the model. We refer to n as the batch size and r as the number of batches. At
the first stage, we rank all of the potential proxy symbols S′ in terms of the correlation between M(S′, t) and
M(S, t), with the correlation weighted by the total notional value traded in S in the given time period. From
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this, we chose the top n to go into the model. At stage i > 1, we have a model consisting of (i−1)n symbols.
To choose the next n symbols, we compute the residuals (i.e. true values minus model predictions) and rank
the remaining M(S′, t) by their correlation with these residuals. Again the top n symbols get added to the
model, and the model coefficients are updated by retraining model with the new symbols included. This
selection procedure is displayed in the pseudocode below:

def choose_top_n_predictors(proxy_data,target_data,weights,n):

# Choose the top n predictor columns from proxy_data by correlation with target_data

R = []

for single_proxy_name, single_proxy in proxy_data:

r = weighted_correlation(single_proxy, target_data, weights)

R.append((r ** 2,single_proxy_name))

return sorted(R)[:n]

def select_symbols(proxy_data,target_data,weights,n,r):

# Select n * r symbols for a linear model

# Compute R square for each linear model fitting proxy symbol data

# (columns of proxy_data) to target_data

R = choose_top_n_predictors(proxy_data,target_data,weights,n)

# coefficients for individual models

coefs = linear coefficients for model using all the symbols in R and weights

active_symbols = symbols in R

for i in range(1,r):

drop all symbols in active_symbols from proxy_data

pred = prediction using linear model from coefs

residuals = target_data - proxy_data

R = choose_top_n_predictors(proxy_data,residuals,weights,n)

add symbols in R to active symbols

refit a weighted linear model with all active_symbols and update coefs

return active_symbols, coefs

A forward selection procedure (i.e. a procedure that starts with a small number of features and sequen-
tially adds new features to the model) is best for our purposes since we know in advance that we will likely
not be adding many features to the model. The first batch would be from potential proxy symbols that are
most “similar” to S, and then sequential batches would pick up what previous batches “missed” in their
predictions of M(S, t). We did not know in advance how large these batches ought to be, so we initially set
it as a varying parameter. Before running any tests, we figured that it is possible that the set of “similar”
symbols is properly represented by a single symbol, or that it may require a larger number. If the batch size
was too large, we would likely overfit. If it was too small, then the model may miss very good predictors of
M(S, t) in early rounds if these predictors are not correlated with later model residuals.

We also added a few more dimensions to the space of possible models. We allowed for a set of symbols
to be required in the proxy symbol set for each S. This was intended to fill the role of O(t) in (1): a proxy
for overall market movement that does not differ symbol-to-symbol. This also allowed the model from [1] to
fit in as a subset of this collection of models. We can simply require that all 6 ETFs from the older model
be included in the framework and set n = 0. We also considered carefully whether to fit an intercept to
the model, and if so, whether to include it in the model. The model intercept plays a strange role here, as
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it indicates a general directionality to the stock’s price independent of the proxy symbols. It seems that a
model may pick up this term over a fixed time period, but unlikely that this directionality will persist over
long period of time. We can address this by either choosing not to fit an intercept to the model, or to fit an
intercept and not include it.

Occasionally, a symbol would not have any trade data in a 10-minute interval, and the M(S, t) value
would not be defined. In these cases, we set M(S, t) = 0. However, the total notional value for that symbol
in such time periods is 0, and since we are weighting our correlations, model observations, and errors by
notional value, these incidences will not have an influence on our final choice of model regardless of our
choice of replacement value.

5 Proxy Symbol Sets

As described in Section 3, we ideally wanted a set of proxy symbols whose prices are not easily influenced
by trading activity in other individual symbols. For this reason, we chose a small set of ETFs as proxies in
[1]. In an effort to expand this list, we collected a list of 685 ETFs from etfdb.com and restricted this set by
a liquidity ranking when choosing our proxy sets.

The list of ETFS come from the headers “Sector”, “Industry”, “Commodity”, “Natural Resources”,
“Asset Class Size”, and “Asset Class Style” in the database. Each header has a list of ETF themes, and each
theme has a list of symbols ranked by market cap. We collected symbols from the first page in each theme
in each of the headers listed. Technically, there may be existing ETFs that we didn’t collect, but given how
large the list was at this point it did not seem particularly important to try and gather more. In addition,
the database only contains existing ETFs, and our market data queries on past data may be missing ETFs
that either changed names or were delisted. We expected that the loss of this small number of symbols was
negligible.

To choose subsets of size N from this list of ETFs, we ranked the ETFs by average daily volume traded
in the time period in question, and chose the top N . Average daily volume traded serves as a proxy for
liquidity, and we figured more liquid symbols were more likely to serve as useful features in our models and
less likely to be influenced by trading in other individual symbols.

6 Method of Analysis

In Section 4, we laid out a number of possibilities for a model of M(S, t) as defined in Section 2. Below we
list the parameters in the model that we need to choose:

1. The set of proxy symbols to draw from.

2. The number of rounds r to add proxy symbols and the number of symbols n to add per round.

3. Which symbols, if any, to require as proxies for all symbols.

4. Whether to fit an intercept, and if so, whether to include it in the model.

We want to understand how each of these parameters influences the metric defined in (4) when trained
and tested on fresh data. We also want to understand how the performance of this model persists over time:
Do the model parameters need to be updated after a certain amount of time? If so, how often?

A naive way to answer these questions would be to simply run a very large test that trains models for all
reasonable combinations of all of these parameters, tests on fresh data, and then chooses the winner based
on the loss function (4). This would make our model selection highly influenced by random characteristics
of the particular training and testing sets we chose, and would give us little mechanistic understanding of
what each of the parameter selections above actually mean.

Instead, we examined each parameter in the list above one-by-one, and over several different time periods,
in order of what we believed to be their importance. Once a parameter was chosen, we held it fixed as we
examined other parameters. In the end, we aimed to reduce the model complexity as much as possible
without incurring a significant loss in performance.
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We should note that this parameter-by-parameter selection method does not guarantee that our final
result gives us the minimal value in (4). For that, we would need to perform a grid search. However, we do
not have enough confidence that the structure of the loss function will be highly persistent over time and
robust to noise in our data, and hence we prefer a more curated strategy.

For each test, we trained the model over a 60 day time period and tested on the following 60 day time
period. We began with late 2019 (August 1 - September 29 train, September 30 - November 28 test), and
examined other time periods later. We expected that the most important characteristic of a model would
be the number of proxy symbols the model includes. For this reason, we first varied r and n as powers of 2
to examine the performance of the model with 1, 2, 4, 8, and 16 symbols, where symbols were collected in
batches of 1, 2, and 4 whenever possible. We will compare these models to the model from [1] and the basic
model that uses only SPY with coefficient 1 as a proxy. We will refer to the latter model as the “SPY Only”
model. After analyzing these models, we will proceed to tune the other parameters and examine the model
on different time periods.

We will begin with a modest proxy set- a list of the 50 ETFs with the highest average daily volume over
the training and testing time period, and determine good choices for r and n. To begin, we do not include
the M(S, t′) term or any required symbols, and we fit an intercept, but did not include it in the model.
That is, we forced the intercept term to be 0 for generalization purposes when fitting to new data, which
essentially amounted to centering the data before training. These options and the possibility of drawing
symbols from larger proxy sets are reconsidered later.

We figured that the inclusion of the ETFs in the testing metric would be a bit misleading, since the
model on these symbols is quite likely to perform well due to the mere similarity among them. Also, in
light of the concerns raised in Section 3 the causal direction between ETF prices is much less clear than
the direction of influence from ETFs to non-ETFs. For this reason, we will be excluding all ETFs from our
metric calculations, as in [1].

7 Results and Analysis

Our first test on the batch size and fitting rounds used the top 50 ETFs by average daily volume for the
list of potential proxies. The results, shown in Figure 1, indicate that the model does noticeably better
than both the original model and the SPY Only model, but the the iterative symbol addition method leads
to quick overfitting. In fact, the batch size n had much less influence on the generalization error than the
number of rounds r did. The error measured is average square prediction error scaled by 106. From this
point forward, we will refer to this average error on the training set as “train error” and this average error
on the test set as “test error”.

Here we see a direct inverse relationship between training and testing error, which is of course a sign of
overfitting. Our simplest model–1 symbol, 1 batch–had the best generalization error out of all of the options
we considered. While the model is simple, it constitutes as much of an improvement from the model in [1]
that this model made on the basic “SPY Only” model.

Earlier on in the research process, we found more promising results when considering the top 2,000
symbols by average daily notional value as both the proxy set and the set of symbols to be tested. In the
case presented above, we have reduced the proxy set to 50 ETFS to address the concerns in Section 3,
which of course might exclude good predictors from the models. We also expect the behavior of symbols
with less trading activity and lower prices to be more difficult to approximate through ETFs, so our model
performance is likely to degrade due to our inclusion of all symbols in the testing set, and our exclusion of
the top 50 ETFs from this proxy set.

To test these hypotheses, we reran the above test with a few parameters varying. We tried including the
proxy set of symbols in the metric calculation, expanding the proxy set to all 685 ETFs from our database,
and removing the bottom 2% and 5% of symbols by average daily notional value from the metric calculation.
In each case, the shape of the plot analogous to Figure 1 was the same- the simplest models performed the
best on the test data, and outperformed the old model by approximately the same degree that the old model
improved from the SPY only model. The absolute scores did differ, significantly, as indicated in Table 1. All
results have the set of 50 ETFs for the proxy set, unless otherwise specified.

Here we can see that the inclusion of the ETFs beyond the original 50 as proxies is not significantly
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Figure 1: Proxy set size test on top 50 ETFs

Model Test Error % Improvement from SPY Only % Improvement from [1]
50 ETFS 20.59 8.39 4.35
All ETFS 20.47 8.39 4.91

50 ETF Metric inclusion 16.88 11.52 5.7
All ETF Metric inclusion 16.78 12.05 6.26

2% NV drop 17.7 10.16 4.47
5% NV drop 15.18 11.85 5.14

Table 1: Variations on proxy sets and metric sets

helpful. The improvements from the baseline are almost exactly the same, and when including all symbols
in the metric, the test error is again almost the same. As indicated in 3, we wanted to choose as small a
proxy symbol set as possible, so the model with 50 ETFs fared better here in our minds. We can see also
that the inclusion of the ETFs in the metric reduces the average error significantly, as does the removal of
low notional value symbols. In addition, the improvement from the SPY Only model is larger in the cases
where the metric includes ETFs or fewer low notional value symbols.

It is worth noting that the generalization when adding new symbols to the model actually became worse
when increasing the size of the proxy set to all 685 ETFs. This plot is shown in Figure 2. This indicates
that the correlations found with the additional ETFs were less persistent over time, and that we are best to
stick with a smaller set of ETFs.

Next, we set out to determine the remaining parameters for the model. In particular, we still needed to
determine whether to set a list of symbols as required proxies for all symbols and whether to fit/include an
intercept. At this point, our benchmark test error to beat is 20.59.

Since the current model is so sparse, our first step was to add required symbols to the model to see if we
can better account for the the O(t) term in (4). By requiring all the ETFs in the model from [1] as a proxy in
addition to the single symbol found in the process described above, the average test error slightly increased
to 20.75. By including only SPY, the error increased to 20.67. Since we wanted to keep the model as simple
as possible and there was no improvement, we did not consider requiring specific symbols as proxies from
this point forward.

As for model intercepts, we tested three options. In the first, our baseline, we fit an intercept but did not
include it in the model, and the test error was 20.59. In the second, we did not fit an intercept, and the test
error increased slightly to 20.61. We then tried fitting an intercept and including it in the model, and the
error increased slightly to 20.68. These are very small changes and perhaps not worth seriously considering
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Figure 2: Proxy set size test on top 50 ETFs

when making our decision on the model. As described in Section 4, it is probably best to ignore any global
directionality to a stock’s price for this model. Because of this and the test error for the model that fit the
intercept but did not include it was slightly better, we decided this was the best way to handle the intercept
term. As a sanity check, we recreated the plot in Figure 1 with models that fit intercepts, and the general
shape is the same, with small improvements in our model errors.

One weakness of the above analysis is that all tests were done on a single time period- early August to
late November 2019. These were fairly typical market conditions, and the training data set (from August
to late September) was very similar to the test set (late September to late November) in terms of overall
market movements. We wanted to see if we achieved similar results when testing the model on different time
periods.

We ran the above tests on two other time periods of the same length, one starting on January 1, 2020 and
the other on January 1, 2021. We expected all the 2020 models to perform worse overall, since the market
during the training period, which ends in early March, was very different from the market during the testing
period. The 2021 period was not quite as volatile, so we expected each of the models to do comparatively
better there. The results for the batch size test for 2020 and 2021 data are presented below, in Figures 3
and 4, respectively.

These results are promising. The shapes of the plots are the same, which confirms our choice of the
1-symbol model. The 2020 data is clearly more prone to over-fitting, but the simplest model still did quite
well relative to our baseline models. In fact, the relative improvement of the 1-symbol model over the SPY-
only model compared to the model from [1] actually was noticeably stronger in these cases. The results
are presented in Table 2 below. Here “% Improvement” from a baseline score is the difference between our
model’s score and the baseline, normalized by the baseline.

Model Data Year Test Error % Improvement from SPY Only % Improvement from [1]
2019 20.59 8.39 4.35
2020 82.75 11.06 8.93
2021 83.74 19.25 23.58

Table 2: Variations on time periods for training and testing

We also tested the effect of including required symbols and intercepts on this data, and came to the same
conclusion: it is best to fit in intercept but not include it in the model, and not enforce any required symbols.

It is worth noting that the absolute errors in the early 2021 training data were significantly higher than
any other time period, including the following time period corresponding to the testing data. This is likely
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Figure 3: Proxy set size test on 2020 data

Figure 4: Proxy set size test on 2021 data

due to the fact that the (scaled) notional-weighted variance of M(S, t) during this time period was 264.75.
For comparison, the variance during the testing period was 118.10.

In order to determine the robustness of these results, we reran all of the above tests with some slight
changes to the setup. First, we replaced the M(S, t) data with corresponding data for the VWAP definition
of M(S, t), shown in Equation 3. Second, we changed the method of splitting the data between training
and testing. Rather than training the model on data from a contiguous set of 60 days and testing on data
from the following 60 days, the training data consisted of all data coming from even-numbered days of each
month, and the test data consisted of data from odd-numbered days of the month. This way, we expected
the two data sets would not be influenced by significantly distinct overall market trends. In both cases, the
resulting data was similar, solidifying the conclusion that a single-symbol model with no intercept term was
the best in this framework.
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8 Least Angle Regression

The results of Section 7 show that we can improve on the model from [1] by customizing proxy sets per
symbol. However, the iterative selection method we chose was not as effective as we would have liked. Our
hope was that as we chose larger sets of predictors, the model would begin to both fit the data better and
better until the model became too complex and reached a point of over-fitting. What we found was that
we hit the point of over-fitting immediately. Without further investigation, we did not know if this was
something inherently limiting about the data, or whether our symbol selection procedure was sub-optimal.

As stated in Section 4, the problem of carefully choosing a small set of linear predictors out of a wide
selection of options is well-known to statisticians. Our case is a specific version of this, where all the
predictors, or features, correspond to the price changes of ETFs. In an attempt to find a better symbol
selection procedure, we considered a more complex general feature-selection procedure for high-dimensional
linear models known as least angle regression (LARS) [3]. The LARS method starts similarly to our method
by choosing the most correlated feature and adding it to the model, except with coefficient 0. Features are
then iteratively added to the model as follows: Once n features and their coefficients have been selected,
they are smoothly increased in their least squares direction until another feature not yet in the model is as
correlated with the residual as the model predictions are correlated with the true values. That feature is
then added to the model with coefficient 0.

The approach is clearly similar to ours, and we can choose as before the number of symbols/features to
include in the model to test and see what the proper feature size is (this is more difficult with other subset
selection methods like lasso regression). In addition, scikit-learn already has a LARS implementation that
was well-suited for our purposes, so the implementation was straightforward.

We ran tests to find the best number of symbols to include in the model in a manner similar to those
at the beginning of Section 7 with only the top 50 ETFs considered. This time we included our 1-symbol
model from the previous section in our collection of baselines. In these tests, we only considered 1, 2, and 4
symbols per model. This was partially because again the test error values for these three symbol set sizes
did not indicate that larger models were needed.

The results were not promising for least-angle regression. On each of the three time periods (late 2019,
early 2020, and early 2021), the LARS model had a worse training score that our 1-symbol baseline model.
The results from late 2019 are shown in Figure 5.

Figure 5: LARS test for late 2019 data
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9 Conclusion and Future Steps

In this paper, we explored several options for proxy symbol selection for the distilled impact model. The first
was a custom symbol selection method that iteratively selected symbols in batches based on their correlation
with model residuals. These tests concluded that the simplest possible model in this framework performed
the best under our evaluation metric. We considered some variations on this model, by requiring specified
proxy symbols in the model and varying the use of model intercepts, ultimately finding that it was best to
fit an intercept but not include it in the model, and not require any specific symbols in the proxy set.

To test the idea that our symbol selection procedure was the source of the poor performance of models
with more symbols, we tried using least-angle regression models to find proxy symbol sets. This technique
proved less effective than the simple model found previously.

This idea of automated proxy symbol set selection was essentially the simplest “next step” to take after
the work in [1]. Our final model consistently improved upon the error in the model from [1] to a similar
extent that the model from [1] improved upon its “SPY Only” baseline.

We expect it might be difficult to further improve the distilled impact model in this framework using only
linear models with proxy symbol prices as features. To see further improvements, we may need to change one
or more of the following: our potential feature set, our restriction of only linear models, or our framework
for evaluating the models. The main challenge continues to be the level of noise inherent in the data. Any
future improvements would almost certainly need a change in the feature set, but it might be difficult to find
useful features since the simplest and most intuitively useful features (i.e. proxy symbol price changes) had
such little mileage. Nonlinear models would be easy to test, but without good features, it is highly unlikely
that these models will be successful. For now, we leave the search for further improvements as a task for our
future research.
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