
Rejecting the Black Box: an Inside Look at the Design

of Proof Trading’s New Algorithm

Allison Bishop∗

1 Prologue: Why should you publish an algo design?

Computer science as a practice requires you to define precisely what you mean. You cannot

tell a computer: “trade stocks for me, and give me best execution!” You must patiently and

painstakingly instruct it to copy some portions of bits into other portions of bits, shuffle

some third set of bits around, read in some other bits from somewhere else, and so on. Well,

usually not actually you, but someone. Well, actually lots of someones. Someones who

designed the operating system you’re working on, someones who designed the programming

language you’re using, someones who designed the network protocols your trading system

uses to communicate with other people’s systems, and so on.

These details are fundamentally knowable in nature, but not in scale by individual human

beings. As computer systems evolve, we layer abstractions between ourselves and the lowest

level operations of bits. We delegate to hierarchies of teams, tools, and vendors. We allow

knowledge to pool into silos of narrow specialization, because otherwise, we could not keep

up and get anything done.

The notion of an “algorithm” sits both atop this hierarchy and outside it. If you consult a

computer science textbook, the definition of algorithm will likely use words like “procedure”

or “recipe” that are not intrinsically tied to the realm of computers. It’s the instructions

you give for accomplishing a task, it might say, or a sequence of steps to be followed. The

language becomes awkward and vague, but not because the concept is new. Rather because

the concept is old. So old, that we probably learned it before we gave it a name. We learned

algorithms for tying our shoes, for adding two integers, for brushing our teeth. We learned

these things as answers to the question of “how,” and we learned that answers could have

varying degrees of specificity. At first we needed very specific instructions, but as we learned

and got older, we could follow higher level instructions, subsuming the lowest details as

familiar, predictable pieces that did not need to be said explicitly anymore. We also learned

∗allison@prooftrading.com

1

to subsume certain tools as given, and restrain ourselves from falling too deeply down every

rabbit hole of “why.”

This subsumption has obvious benefits, and less obvious costs. Sometimes we feel the

costs when we try to teach someone else something we “know” but find ourselves unable to

explain. Sometimes we feel the costs when something changes, and we don’t know how to

adapt our procedures effectively. In some cases, the lower level knowledge that informed our

higher level understanding has evaporated from our minds, leaving only a derived residue

that is brittle in its relation to context, and perhaps invisibly so. How long might it take us

to recognize when we are operating on assumptions that are no longer true?

Layering of
Abstraction &
Subsumption of
Details

There is something more that can be lost in layers of abstraction if we are not careful:

the value of forcing ourselves to be explicit. Anyone who has ever taught a young child

or programmed a computer is well aware of the phenomenon - we think we know what we

2

mean, until we see our own words parroted back at us in a literal translation with horrifying

consequences. Sometimes this is born of our failure to properly define a sub-concept we

are referencing (“ok Tommy, I admit I did not really mean it when I said you could color

‘anywhere’ that wasn’t on the wall”), and sometimes it is born of our failure to anticipate the

circumstances under which our instructions will be applied (“oops! I thought I issued that

delete instruction in the subfolder containing those old files, not the main folder containing

the new ones!”) In navigating our lives and careers, we humans are quick to grasp that there

is safety in distance from such specific commands. “But honey, I clearly told the babysitter

to keep him out of trouble!” and “But I only instructed the intern to delete the unnecessary

files!” We often pretend that all we gain from our distance is convenience and efficiency, but

often we are seeking less accountability as well.

Specificity is hard and risky work. But somebody does it, even if we don’t. Between every

layer, somebody has to translate higher level instructions into lower level ones until we get

all the way down to the shuffling of bits or the changing of diapers. The supposedly shared

context that “goes without saying” is meant to make this seamless, but this foundation can

crumble rather easily and dramatically at times.

In the domain of algorithmic trading, shared context may be under quite a bit of strain.

It is a nearly comical game of telephone that begins when someone puts money into a

retirement account. “Give me growth or something,” the future retiree says. “Give them

growth or something,” the fund manager tells his subordinates. “Give me exposure to

these three factors that roughly mean growth or something,” the next person says. Some

number of iterations later, someone says “Give me 100,000 shares of MSFT.” By this point,

an important translation has occurred. The original customer goal, to the extent that it

was ever formulated in the first place, has been pooled with other customers’ goals, melded

through other intermediaries’ interpretations and blended with their own separate goals, and

one or more specific orders to buy/sell stocks has emerged from this process. The benefit to

the end customer so far is supposed to be twofold. One benefit is the supposed superiority

of this chain of experts as compared to the customer’s own haphazard guess at translating

high level goals into concrete orders. The other benefit is diversification: since stocks are

ultimately bought and sold in indivisible units called shares, it isn’t possible for a single

customer with a more limited amount of money and time to purchase and actively maintain

the same diversity of assets that a fund manager can purchase and maintain with the pool

of all their customers’ money. One can certainly debate the true extent of these benefits,

and compare them to more automated solutions like indexing and various artificial notions of

fractional shares. But it’s at least somewhat clear what problems these services are supposed

to be solving. It would be quite unreasonable and inefficient for each individual retiree to

build up the body of knowledge required to passably translate “growth or something” into

a suitable portfolio of financial assets and continually re-balance it over time.

Conversely, there is danger lurking in the end customer’s ability to vaguely say “growth

3

or something.” The portfolio that emerges may not serve the customers needs well at all.

Or the customer may have wildly unrealistic expectations of performance or risk. Such

things may be the result of honest miscommunication, deliberate subterfuge, or misaligned

incentives (or all of the above).

This is not a problem that is particular to finance, or to computer driven systems. It

is a fundamental tension inherent in all task delegation: when you save yourself the work

of making your instructions explicit all the way down to the lowest detail, you introduce

opportunities for an agent who does not fully understand or share your goals to deviate

from what you want them to do in certain circumstances if you had taken the time to fully

understand the details.

A popular mechanism for navigating this is competition and choice. Agents will compete

for your business, and you can reward the ones who do a good job by continuing to use them,

and punish the ones who do a bad job by terminating their services. This mechanism works

well when a few conditions are satisfied: 1. there is a healthy range of options for service

providers, 2. distinguishing between a good job and a bad job is something that can be done

in a reasonable amount of time, and is a much easier problem than doing a good job in the

first place.

regulators tasked
with enforcing

intepretation of
best execution at

each layer of
translation

competition and choice
depends on a health
range of options for
service providers

customer delegate
specialized financial

tasks to professionals
and trust there are

bounds on how
professionals should

behave

Ideal
Ecosystem

customer

service
providers

regulator

In the case of a customer contributing to a retirement account, that second condition is

problematic. The funds are supposed to perform well over a long term time horizon, and

judging them on a short term basis is likely to be dominated by market noise and yield little

insight. As a result, there are vast sub-industries of finance organized around addressing

these tensions, and vast regulatory regimes in place to try to protect end customers and

enforce at least a reasonable zone of interpretation at each layer of translation. Pretty much

everyone agrees that this is necessary. Customers need to be able to delegate specialized

financial tasks to professionals and trust there are bounds on how professionals should behave.

Competition alone is not a sufficient mechanism, as customers aren’t readily equipped to

4

evaluate sophisticated products without putting in an unreasonable amount of work. As

new layers emerge and old layers evolve, it’s a constantly moving and delicate dance.

And in fact, we’ve only started. The game of telephone keeps going. The next person

says “Give me 25,000 shares of MSFT today and probably 25,000 more tomorrow, we’ll see

how it goes.” The next person says “allocate today’s 25,000 share order to one of our brokers

and ensure best execution.”

Let’s pause again for a moment. Something weird happened there. Things were still

getting more concrete, but then a new source of vagueness slipped in: the notion of best

execution. It sounds pretty innocent: who wouldn’t want “best” execution? But what does

it actually mean?

If you consult FINRA rule 5310 on Best Execution and Interpositioning, you find that a

broker must “use reasonable diligence to ascertain the best market for the subject security

and buy or sell in such market so that the resultant price to the customer is as favorable

as possible under prevailing market conditions.” This language rules out some obviously

bad and lazy things, like routing all customer orders to a particular dark pool without ever

comparing the results to other possibilities. But it leaves a lot of wiggle room. There

are two gaping holes in this guidance: one is lurking in the phrase “under prevailing market

conditions.” Since the execution of trades is an interactive process between the many brokers

submitting orders and the multiple venues matching orders, the timing of trades is highly

variable. Timing of individual trades is not completely within a broker’s control (they can’t

control when willing counter-parties arrive), but it is influenced heavily by the choices the

broker makes in how to distribute a large order into many small orders over time and over

trading venues, and how the broker communicates orders to trading venues (use of order

types and order parameters). Since “prevailing market conditions” change rapidly in time,

the influence a broker exerts over timing is also an influence on the “prevailing market

conditions” under which the trade will be executing. In this way, brokers affect both the

grade and the grading rubric for best execution at the same time.

The second gaping hole is that the best execution guidance doesn’t really grapple with

the nature of large orders, which are unlikely to be traded in their entirety at once. When

a broker designs an algorithm to break up a large order into smaller pieces and seek to

trade the pieces gradually throughout the trading day, does the best execution responsibility

apply to just the pieces individually or to the large order as a whole? Clearly in spirit,

it should apply to the large order as a whole. But what does a “price to the customer

... as favorable as possible under prevailing market conditions” even mean when you are

looking at several individual prices over the course of a day where market conditions were

changing dynamically? How can you know what would have been possible if the order had

been chopped up in a different way? What is the space of “reasonable” alternatives that one

should compare to and how does one do so while general market noise is likely to drown out

small differences in outcomes due to the broker’s behavior? And if you give up on this harder

5

problem and just evaluate each small trade in its temporally local context where things are

clearer, surely you might be blind to important failures to choose the “best” local times and

order sizes.

So what happens after this troublesome notion of “best execution” is introduced into the

game of telephone? It’s not too hard to guess. It gets parroted down the line for a bit, then

disappears into the black box of a secret “algo”. When the telephone game turns around

and each person reports back to their superior, the “best execution” straw man re-emerges

at the same point and gets passed back up. “Buy me 25,000 shares of MSFT today using

your VWAP algorithm that provides best execution,” the next person tells the broker. The

algorithm makes its choices of how to slice up the 25,000 shares, and spits outs a dynamic

sequence of much more specific commands: “place a midpoint peg buy order for MSFT on

NASDAQ at 10:01:02 am for 100 shares,” the algo says. These commands get transmitted

through multiple network layers (and often multiple vendors and intermediaries) and finally

land at a trading venue, where perhaps they result in a trade. Their fate gets passed back up

to the algo, which may adjust its state and issue new orders. The algo passes its results back

to the broker who is running it. The broker periodically runs some paltry and horribly noisy

tests on these results to make sure they seem reasonable. Then the broker passes back up to

the next person: “here’s your volume-weighted average price, achieved with best execution.”

This continues to percolate up the levels to the originator of the 100,000 share mandate,

who ultimately receives their 100,000 shares of MSFT, their bill, and an assertion of “best

execution.” Here the “best execution” notion evaporates again, and the message morphs

back into “here’s your growth or something” to the retiree, who can check the behavior of

their account and try to keep it consistent with their goals at various time horizons.

There are two questions that arise when we critically examine this workflow. First: are

algo designers really the best people to translate this vague notion of “best execution” into

specific sequences of orders in a dynamic, distributed market? Second: how does the com-

monly black-box nature of algos contribute positively and negatively to the overall process?

How much visibility should an algo provide, and to whom?

We firmly believe the answer to the first question is yes. The problem of algorithm design

for electronic trading is a complex scientific problem. It involves the delicate dynamics of

distributed systems, the complex economics of continuous trading and batched auctions, the

fraught task of modeling market forces as randomized processes, and the herculean statistical

challenge of evaluating alternative choices in a meaningful way when the degrees of freedom

combined with the inherent variance conspire to overwhelm the sample size of a single firm’s

trading activity. This is a problem that deserves to be tackled by scientists. Retirees,

regulators, and even financial professionals with other specialities should not be expected to

solve these kind of problems for themselves and then tie the algo designers’ hands.

But is competition a sufficient mechanism to ensure that algo designers will do a “good”

job on behalf of the end clients? While there is a healthy number of agency brokers and

6

algo products available for trading US equities, it is not at all clear that those who choose

between the products can evaluate their effectiveness with a sufficient amount of accuracy

within a reasonable use of energy and time.

Let’s do a thought experiment (informed by real market data) to help gauge the extent

of the challenge to evaluation. Each trading day, the official opening price of a stock is set

through an auction at 9:30 am, and the price fluctuates continuously throughout the day

until the official closing price is set in an auction at 4:00 pm1.

If we look at the sequence of prices obtained for trades of a given stock on a given trading

day, there is a significant amount of fluctuation. To get a rough sense of how much, we can

look at the relative change from the opening price to the closing price. If we let Op denote

the opening price and Cp denote the closing price, then this quantity is defined as:

Dp :=
Cp −Op

Op

.

We have made this relative to the opening price so that it is meaningful to compare this

quantity across different stocks that have vastly different prices. On a given day, we will

have over 10, 000 values of Dp, one for each symbol. If we collect these Dp values over

symbols and over trading days, we can view them as samples from a single probability

distribution, weighted by notional value. In other words, we can build up an empirical

estimate of the underlying distribution by placing probability mass on each observed Dp

value that is proportional to the notional value traded in that symbol on that day.

We did this for all symbols and all trading days over the month of July 2021. Once we

have this probability distribution in hand, we can sample it any N times and compute the

average value of Dp (evenly weighting over our N samples). In some sense, N represents

the number of orders we might use in a sample to try to measure an algo’s performance.

This is not a perfect analogy, as each sample here is drawn according to notional value, and

real institutional trading flow will probably be distributed differently over symbols than the

general notional value distribution over the market. Nonetheless, this should give us some

intuition for how much variance there might be in our performance metrics. We can do

many experiments of drawing N samples, and look how much the resulting averages vary.

In particular, we’ll look at the interquartile range of our resulting averages, which is the

difference between the 75th and 25th percentiles.

For each N from 1 to 150, we did 1000 experiments, and took the difference between the

750th and 250th resulting values after sorting. Below is a graph of those interquartile ranges

1This is already ignoring some nuance. Sometimes opening or closing auctions are late or don’t happen,

and the notion of “price” is multi-faceted. The stock “price” might refer to the prices of actual trades (which

happen at discrete times and for varying amounts of shares), or quoted prices from willing buyers or sellers,

which are distinct from each other and last for certain windows or time before being updated, traded, or

canceled. And some trading occurs in pre-market and post-market sessions, before 9:30 am and after 4 pm,

respectively.

7

as N , the sample size for each experiment, grows from 1 to 150:

0 20 40 60 80 100 120 140

.006

.008

.010

.012

.014

.016

AVPL BAZ CXCO DACH

Dp

Op

Cp

N = 4 N = 150

p
r
o

b
.

Dp Dp

Collect data from
10,000 symbols over
1 month (July 2021)

Take relative change from
opening price to the closing price
so as to be able to meaningfully
compare aross symbols of vastly
different prices

View collected data as samples
from a single probability
distribution, weighted by the
symbol’s notional value traded

Sample distribution N times and
compute the average value of Dp
(evenly weighting over N samples)

Draw N sample many times and
look at how much the resulting
averages vary (by looking at their
interquartile range)

Map sample sizes to interquartile
ranges. As sample size increase,
variation between resulting
averages (of Dp) decreases.

draw N
samples

IQR = 0.016 IQR = 0.005

0.0

=

Cp – Op
Op

Dp

Dp Dp Dp Dp

1

2

3

4

5

6

Thought
Experiment

Unsurprisingly, as the sample size of each experiment increases, the variation between

the resulting averages decreases. At sample sizes near 150, the interquartile ranges are a bit

greater than 0.005 wide, and the improvement in precision as a function of growing sample

size has slowed.

So what does this mean? For one thing, it suggests that it’s quite difficult to see mean-

ingful performance differences between algos on metrics like slippage vs. arrival at these

sample sizes, unless the performance differences are considerably larger than 50 bps. For

A-B testing different algos, especially when we are limited to the flow of a single client over a

8

period of a month or two, this is pretty sobering news. Without further correction and care-

ful normalization (a fraught process itself), extraneous market forces are likely to pull the

results around noisily enough to obscure even meaningful and consistent differences in algo

performance. In fact, measuring algo performance may be as hard (or harder!) as designing

algos in the first place. And the people with the skill set to tackle this hard problem? You

guessed it - the same people with the skill set to design algos.

This creates a very uncomfortable position for the first person in the game of telephone

who is directed to ensure “best execution.” To truly embody the full spirit of this directive

seems to be a full time job equivalent to designing algos, and that’s supposed to be the thing

that’s delegated to the black box! What to do?

There are a few common approaches to try to wriggle out of this conundrum. One is to

hire in-house scientists to grade the outputs of the algo black boxes. Another is to outsource

this job to an independent third party (a TCA provider). A third option is to hollow out

the vague directive of “best execution” and replace it with a checklist that boils down to

something more like “not obviously terrible execution.”

In-house data
scientist

TCA
provider

BestEx
checklist

opened
blackbox

2

3

4

1

Approaching
Best Execution

All of these options have major drawbacks. The use of in-house scientists is likely the best,

but it is also costly, and if everyone did it there would be some comical effects: the overall

population of quantitative scientists would spend much more resources on grading algos

than designing algos, and that feels like an inefficient state for the market as a whole. Also,

9

finding, training, and crucially listening to good data scientists is a much harder problem

than proliferating data science boot camps would like you to believe. The outsourced TCA

provider at least allows a single set of scientists to serve as algo evaluators for a large

population of firms who need to evaluate algos, but the incentives are a little weird. While

it is true that the third party evaluators should have no incentive to cherry-pick the stats in

favor of any particular algo, they also have no real strong incentive to do a good job, nor any

clear mandate on what a good job is. Human beings are creatures of inertia, afterall, and

most of what clients want from TCA providers is a stamp of approval that what they are

doing already is basically ok. Providing that stamp is much easier to do if one combines TCA

with the third option: fixing a minimally defensible definition of “best execution” rather than

a formulating a more satisfying but complex one and having to teach your clients that this

is what they should want.

There is a fourth option that, as far as we know, has not really been tried before: open

the black box. What if we didn’t limit ourselves to grading algos solely on noisy performance

metrics? Naturally we’d always want to measure those to learn anything we reasonably can,

but what if we could also cut through the noise and examine the raw source: the algo designs

themselves, and the processes that drove their development?

As an illustrative comparison, consider the task of deciding where to send your child to

school. You might look at test scores for each contender and these are likely to reveal any

huge differences, but small differences are unlikely to be particularly meaningful. You could

stop there and say, “I’ll send my child to this school that has reasonable test scores,” but

wouldn’t you also want to know how the various schools approach their mission of education?

Ideally you would want to visit the various schools, you would want to talk to the teachers.

You would want to know what they think is important, what they think is unimportant.

You would want to gauge how much thought they have put into their approach, and how

aligned their values are with your values. You would want to see what’s underneath the

test scores. Why settle for a noisy outcome evaluation when you can also directly assess the

mechanisms that drive the outcomes?

It’s true that human beings are not great at this. Our minds are subconsciously ma-

nipulated by many heuristic habits that bias our assessments. We believe far too strongly

in first impressions. We give undue weight to recent experiences, we are prone to falsely

equate what is familiar with what is desirable, etc. But it is a fantasy to think that “data”

on its own can save us from these cognitive traps. Our minds are instinctual and persuasive

storytellers, and we can spin a story around ambiguous data about as easily as we can in a

vacuum. For this reason, we should not wholly replace the challenging process of subjective

assessment with blind reliance on noisy metrics.

So what can a non-algo designer reasonably hope to extract from a disclosed algo design

and an account of the research behind it? Hopefully at least a few things like: 1. a sense

of what kind of scientific processes the designers employ, 2. an understanding of what goals

10

the designers are prioritizing, 3. an awareness of the assumptions the designers are making,

4. a rough idea of the extent and level of competency of the research, and last but certainly

not least: 5. an opportunity to collaborate more directly with the designers and aim their

expertise more effectively at achieving particular goals.

Many would argue that the potential downsides of publicly disclosing algo designs out-

weigh the value of these kind of assessments and collaborations. The most common argu-

ments given are 1. competitors can copy a disclosed algo design and 2. a disclosed algo

design is more vulnerable to being “gamed” by other traders. In a direct sense, 1. is only

a problem for the company providing the algo, not its customers. But indirectly, one might

worry that copied designs will remove incentive for innovation. This concern is circular

though, because the incentive for innovation is already weak in the absence of a broadly

accessible and reliable mechanism for gauging algo quality.

Concern 2. above is directly relevant to the clients of an algo, and it is certainly worth

taking seriously. Let’s think about what it means for a design to become “gameable” due to

public information about its development. The process would be: someone reads the newly

public information, combines it with their own current knowledge, and comes up with an

idea to behave differently in their own trading algorithms and potentially improve their own

outcomes at the expense of the disclosed algo’s customers. If this worked to a significant

extent, it would have to either 1. essentially work against a large portion of agency algos

or 2. involve a step of approximately identifying the disclosed algo (or something very like

it) in the wild. We must keep in mind here that someone looking to exploit the disclosed

algorithm will not know what side/stocks/amounts the algo is actively trading on any given

day. This is private information that comes from the customers and is never disclosed.

If 1. is true, then the role of the algo design disclosures is likely coincidental. General

knowledge about how agency algos typically work is available already, and the set of people

across the industry who have direct experience working on or around agency algos is not

small. If 2. is true, then the disclosed algo is doing something unusually noticeable, either

in its general behavior or in its response to conditions that a would-be gamer manufactures.

In this case, the design has a problem, and should be fixed. Not disclosing the design is a

flimsy protection in this case. Whatever the noticeable and exploitable behavior is, it could

also be discovered by someone searching for such a thing, even if that person didn’t know

ahead of time what exactly to look for. In our age of big data and fast technology, such an

unguided search could take longer than a targeted one, but perhaps not that much longer.

11

copying?

predation?

competitor
copying algo
design

already little incentive for
innovation in the absence of
broadly accessible and reliable
mechanism for gauging algo
quality

genral knowldge of
agency algos is
publicly available

publication of algo
helps discover and
patch
vulnerabilities

vulnerability to
“gaming” by
other traders

Openning Up
The Algo

If we assume that any serious exploit will be eventually discovered, then our goal should

be to discover and patch it ourselves as quickly as possible. Publication of our algo design

and research supports this goal, as it enables us to collaborate with others more freely, and to

vet our design through a larger audience. This is the same approach that is used to produce

strong encryption algorithms like AES (the advanced encryption standard) that we all rely on

to secure our sensitive communications (e.g. using our credit cards for online transactions).

The design of AES is fully public and has been subject to extensive public vetting from the

cryptologic research community for decades. The sensitive information encrypted via AES

is protected by secret key values which are unknown to would-be attackers, but everything

about how the secret keys and the sensitive information is combined to form an inscrutable

ciphertext is known.

We believe that everyone up the telephone chain from the algo black box would be better

served by a translucent box - and that’s why we commit to publishing the research that goes

into the design of our algorithms, as well the design of the ways we evaluate performance.

The rest of this paper will detail the process we used to design the scheduling component of

our new trading algorithm, as well as the twists and bumps we encountered along the way.

Our design process is heavily driven by the desire to learn as much as we can from

historical market data, which is available to us in a quantity that is orders of magnitude

greater than our own live trading data will represent for a long time. By evaluating potential

features of the design extensively on historical market data, rather than solely relying on

12

noisy A-B tests in live trading, we can improve our design much more quickly and more

robustly. Historical market data can tell us a lot about how the market is likely to react to

common situations. Once we’ve developed such information, we can start to model how the

market may react to potential choices that our algo may make. Finally, we can derive the

choices that our algo will make by comparing the modeled market reactions to the available

choices and choosing the path that our modeling predicts will be most favorable for our

execution goal.

Our execution goal is formulated mathematically in a later section, but its simplified

version is basically: “don’t shit where you eat.” In this context, it means: try not to pay

more as a buyer because you have pushed the price up. This is close in spirit to minimizing

“impact,” but lots of people use that term without converging on a single mathematical

meaning, so we want to be a little more specific. Its most direct meaning is also not quite

what we care about - we may not care if our activity moved the price after we were mostly

done trading. We care more about how our activity so far drives up the prices we will incur

in our remaining activity. In other words, we care about prices over time proportionately to

how much we trade at those times. So we will seek to model how our behavior affects prices

at a forward marching sequence of times, and we will define a cost function that ultimately

calculates: according to our model of market reactions, what’s the additional premium we

expect to pay as a buyer due to our own actions driving up the stock over our sequence

of trades? Naturally, we design the algo to choose the actions that minimize our estimate

of this cost function, subject to accomplishing the desired total amount of trading over the

time period.

There is one big question this paper will not answer. It is a question we get asked a lot:

by would-be investors, colleagues in the industry, potential clients, and even our families

on occasion. “Just me give me ballpark,” they start, “how much money do you think you

can ultimately save your clients?” We sigh. It’s obvious why everyone wants an answer. It

would certainly make our lives easier if we just gave an answer. We could hedge it in all the

typical ways: “This is just a projection but...” and“If you assume ...” But frankly, there’s

currently no scientifically responsible way to answer this question. We could point to the

paper “Trading Costs” by Frazzini, Israel, and Moskowitz 2, which estimates AQR’s average

market impact over many years of trading data to be roughly 9 bps, with about 1.26 bps of

that being “transitory” impact that reverses soon after AQR’s trading activity completes.

This seems to suggest at least that trading costs overall do represent a significant term in the

overall costs of institutional investing. But how much of this term is inherent, and how much

is attributable to differences between algos? We don’t know. It’s very hard to know! We

will work diligently to combat the confusion of market noise in our own iterative research

process, and we are optimistic that we will be able to achieve reasonable and compelling

estimates of how much better each version of our algo is compared to the last. But we won’t

2available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3229719

13

be able to compare ourselves to other algos because, well, *cough*, those algos are hiding in

their black boxes.

So we can’t tell you how much money we would save for a potential client. Because

we don’t know how much money their current brokers are really saving/costing them. And

they don’t know either. And isn’t that unsettling? If we know that this cost term may

be big enough to matter, and we know that we don’t know how to control it with a noisy

competition between black boxes, isn’t that a good enough reason to force the boxes open?

It’s great that a person doesn’t need to become an expert in portfolio management,

algorithmic trading, settlement and clearing, market microstructure, and more in order to

accomplish an investment goal of “growth or something.” And it’s true that most investors

have no interest in going down the telephone chain and understanding how their goal gets

translated into something more concrete at each layer. But shouldn’t that translation be

knowable in principle? Shouldn’t someone be empowered to check that each lower layer is

doing a reasonable job of embodying the higher layer’s wishes?

We think so. But we don’t expect that other algo designers will shed their black boxes

anytime soon. We’ll just be here in the meantime, tinkering away in public, and happy to

hear your thoughts on what we’re building.

2 Introduction: A High-Level View of Proof’s Trading

Algorithm

The work of designing a trading algorithm is basically the work of filling in the empty space

between a set of low level trading tools and a high level objective. This work has several

stages, not necessarily performed in the following order:

• Determining the set of trading tools: deciding which venue connections and order types

to use

• Developing a framework for assembling the tools into an algorithm

• Fleshing out the high level objective into more detailed metrics

• Developing a framework for comparing different versions of the algorithm according to

the desired metrics

An intuitively appealing and perhaps common approach is: assemble as many trading

tools as possible, throw them into an algorithm that mostly follows the “gut” of experienced

traders, decide on a standard TCA metric like slippage vs. vwap or slippage vs. arrival, and

then A-B test different versions of the algo on real trades, choosing whichever one performs

14

best on the TCA metric (probably defaulting to no changes if the performance difference is

too small or seems unreliable).

There are several things about this approach that are unsatisfying, however. The data

science part here - the A-B testing - is being asked to work in highly sub-optimal conditions.

The final outcomes on price are very noisy, and the sample size of live trading performed by

the algo is relatively small. This makes setting the criteria for adopting changes to the algo

very fraught. If the criteria set a higher bar for robustness and clarity of results, precious

few proposed changes will clear the bar. But if the criteria set a lower bar, noise is likely to

usher in a bloat of questionable “upgrades.”

Another unsatisfying aspect of this approach is its distribution of labor between human

intuition and quantitative science. Both are certainly needed! However, it’s important to

use humans for what humans are good at, and use data science for what data science is good

at. Not only do we have data science working in sub-optimal conditions here, but we also

have humans working in sub-optimal conditions. The search space of “ways that one could

assemble underlying tools into a full algo” is vast and high-dimensional. This is not a great

environment for human intuition to operate blindly in. An overreaction to this would be

to fully replace human intuition with a fancy machine learning algorithm to quickly churn

through the vast, high-dimensional search space. This would be a fine idea, except for the

still unsolved noisy evaluation problem. If there isn’t an extremely reliable way to compare

alternatives, searching through too many possibilities in an automated fashion is a recipe for

drowning in coincidences.

What we need instead is a way for humans and machines to work together to combat the

noisy evaluation problem on a smaller, well-structured search space, with much more data at

their disposal. Machine learning works best when it is employed to find simple structures on

large data sets. So to set ourselves up for success, we’ll look for ways to use human intuition

to intelligently limit and structure the search space, as well as ways to enlarge the available

data.

The first structure we impose is a modular and hierarchical one. Our algos consist of

several layers of logic, each with distinct responsibilities. The highest layer decides how much

of the total order to delegate to each of our underlying strategies, each of which represents a

distinct execution goal. The decisions at this layer are controlled by parameters set by the

client entering the order, as well as by our research which informs limits we place on how

much volume a given strategy can or should successfully handle.

So far, we have designed three underlying strategies. One that we refer to as “VWAP”

is intended to minimize slippage to the market’s volume-weighted average price over the

lifetime of the order. Another is a “liquidity seeker” whose goal is to find relatively big

blocks. The third is an “impact minimizer” whose goal is to trade somewhat steadily while

attempting to minimize the price impact of that trading activity.

Within each strategy, there is a “scheduler” layer whose job it is to decide how much to

15

try to trade over medium-term timescales, which are roughly five to twenty minutes long.

These decisions will be made with the context of how much has traded so far, how much

of order’s lifetime is left, as well as historical information like volume curves, and real-time

information derived from market data or from the outcomes of recent actions taken by the

algo. We can think of a scheduler as an oracle who answers questions like, “given what I

know now and what’s left to trade in my order, how much should I trade over the next X

minutes?” Naturally, the answer to this question should depend on the execution goal, e.g.

whether your goal is to get close to VWAP or to minimize price impact, etc. This is why

each strategy has its own kind of scheduler.

Below the scheduler layer is a “tactical” layer whose job it is to decide how to trade the

amount that the scheduler has prescribed for the next time interval, where time intervals

are of randomized lengths typically within the range of five to twenty minutes. This is the

layer that interacts with venues, decides when to post and when to take, which order types

to use, etc.

In structural terms, we feel our intuition about market microstructure is very well-tuned.

Accumulated across the Proof team, we have several decades of experience focusing on market

microstructure in US equities. For the low level tactics of our algos, we are comfortable

starting with a curated mix of passive and aggressive tools that we believe should serve our

purposes well, including tools we ourselves heavily contributed to at IEX. We do expect to

continually re-evaluate and improve upon these choices over time.

We have focused our research efforts so far at Proof on the layer where we expect our intu-

ition is weaker and the room for improvement from a scientific approach may be considerable:

the scheduler layer. The research behind our initial VWAP scheduler design is already pub-

lished in a separate white paper (available at https://www.prooftrading.com/docs/vwap.pdf).

In this paper, we present the research behind our initial design for the impact minimizing

scheduler.

Having narrowed our goal for now to the design of a scheduler whose mandate is to

“minimize impact” conditioned on completing a certain total amount of volume, our next

task is to flesh out what we mean by “impact” and how we intend to go about measuring

and minimizing it. Intuitively, we would like to say that impact represents how much a price

moves due to our trading activity. But this is not something we can directly measure, as we

don’t know what would have happened without our trading activity. However, we can use

various normalization techniques to try to reduce the confounding influence of wider market

forces. We’ll discuss such techniques more extensively in the next section.

Our basic notion of a price movement will be a relative one, and will be localized to ten

minute time intervals at a time. We’ll view the regular trading day in a given symbol as

divided into 39 ten minute intervals, the first being from 9:30 am to 9:40 am, and the last

being from 3:50 pm to 4 pm. For each of these intervals, we’ll consider the relative price

movement as the ratio of last trade price occurring in that interval over the last trade price

16

occurring in the previous interval. (For the first interval, the denominator will be the first

trade price occurring in that interval.) LPi will represent the last trade price occurring in

interval i, and the ratios we’ll be interested in are of the form LPi

LPi−1
. The evolution of the

price over the course of the day can then be tracked by successively multiplying these ratios.

It can be more convenient, however, to express these ratios as exponentials so that this price

evolution process corresponds to addition in the exponent. In other words, for each interval

i, we define the value ∆i such that:

LPi
LPi−1

= e∆i .

(i.e. ∆i is the natural logarithm of the price ratio). In this notation, we can express the

price at the end of i intervals the initial price multiplied by a single exponential term where

the exponent is a sum of the first i values of ∆:

LPi = e
∑

j<=i ∆jFP,

where FP denotes the first price of the day (the opening price). We note that price move-

ments that revert back to the starting price correspond to sequences of ∆i values that sum

to zero.

Having defined the ∆i values that we use as measures of “impact” (subject to additional

normalization techniques), our next task is to consider how we describe and study the rela-

tionship between the actions our algo will take and the times series of ∆i values. We could

try to study this solely using data collected from our own trading activity, where we clearly

know what actions we took. However, even with normalization techniques that reduce the

noise of general market movements on the ∆i values for a given stock, it is very difficult to

detect and model meaningful relationships between various quoting and trading behaviors

and the time series of ∆i values. This is a strong motivation for bringing in historical market

data as resource, rather than relying solely on the small sample sizes of our own trading.

Leveraging historical market data requires us to define a translation between our own

actions and features of trading and quoting activity that we can identify and study in the

historical market data that we have. This is a bit challenging, as historical market data does

not link or identify parties. We have price, size, and timing information about individual

quote and trade events in historical market data, but no information about the underlying

parties. Analogously, when our algo is taking actions in the market, our counter-parties will

not have information that identifies us (at least in a direct sense. It is certainly part of our

design challenge to avoid being identified indirectly by taking actions that are too distinctive

or identifiable, etc.)

For each time interval and symbol in our historical market data, we can compute the

value of ∆ representing the exponent of the relative price change, and we can also compute

various features of the trading and quoting behavior in that same interval, or in the interval(s)

17

preceding it. (Ultimately, we choose to consider the behavior in the current interval and the

one interval preceding it, so that we can model reversion effects from one interval to the

next.) For example, we can compute things like: the total volume traded in the interval, the

percentage of that volume that traded at the prevailing NBB/NBO/midpoint, the average

size quoted at the NBB and NBO, etc. Overall, the set of features we could potentially

compute is comically large, including such things as “the number of odd lot trades happening

in an even numbered second at a price that is within 1
3

of the spread from the NBB and ...

.”

The trick, of course, is deciding what features we should focus on. In defining features of

trading behavior to study, we have several goals:

• The features should be likely to be related to price movements.

• The features should be simple and common enough to enable robust modeling in noisy

data sets.

• The features should capture the important effects of our algo’s trading that are “visible”

to the market.

• The features should be reliably related to our scheduling decisions.

The first two goals concern the tractability of the data science problem we will be tackling

as we try to model the relationship between features and our ∆i time series. In general,

more complicated features and models require more and more data to train reliably, and are

less robust in the face of changing conditions. Hence we prefer simple features taking on

commonly occurring values, so we can collect lots of examples in training data. Naturally, we

also need these features to actually have a meaningful relationship with the price sequences

we are representing with ∆i values.

The last two goals concern the relevance of the data science problem we will be tackling.

If the features we study don’t really capture the relevant effects of our trading, or aren’t

things we can at least somewhat control through our scheduling decisions, they won’t be

a good foundation for the decision-making process of our impact-minimizing scheduler. As

an extreme example, we could tautologically define ∆i as a feature, and viola! It perfectly

correlates with ∆i! But clearly this does not provide us with any insight about how to

schedule our trading volumes to minimize our influence on ∆i’s. However, if we have a

feature like “the volume of trades that occurred at the NBO as a percentage of average daily

volume,” it is reasonable to expect that this might have a meaningful relationship with price,

and that we have some control over how our trading contributes to it. We might use what

we can learn about the relationship between this feature and price to help make scheduling

decisions, as we might project that scheduling a certain amount of volume to buy will lead

us to take a certain portion of that volume at the NBO, and hence may influence ∆i in

18

accordance with the typical relationship between our feature and ∆i. Once we have a way

of predicting how our scheduling decisions affect features, and a way of predicting how those

features affect price movements, we can start to combine these to predict the expected impact

of our decisions, and hence meaningfully compare different schedules we might choose. Then

we can ultimately choose a schedule that minimizes our expected impact, conditioned on

completing the target amount of volume in a specified time frame.

feature

impact
prediction

price

volumei ∆i

historical
market
data

There are some possible pitfalls here that we must remain keenly aware of. One is

the classic “correlation does not equal causation.” We are basically hypothesizing that our

scheduling decisions lead to quoting/trading behavior, which then causally impacts price

movements. However, the relationships we find between behavioral features and price move-

ments in historical market data are correlations, and it’s possible they are not causal in

the way that we intend. It’s also worth noting that the two flavors of goals for our feature

selection, tractability and relevance, are in tension to some extent. When we think about

trying to capture everything about our own actions that might drive an impact in price, it’s

easy to come up with a very long list of possible features. It might feel intuitive from this

perspective to throw in everything that we can, hoping that the union of all the things we’ve

thought of does a good job of covering all the bases. The level of noise in price movements,

however, is likely to render this approach untenable. Instead, we’ll need to carefully budget

and capture as much relevance as we can in a small package of features in order to give

us a chance at building robust and meaningful models. All of these challenges (and more!)

make feature selection very fraught. As a result, we expect to be continually revisiting and

attempting to improve this stage of the research as we iterate on our algorithm’s design.

19

For a candidate set of features, we’ll investigate questions like: how strong is the apparent

relationship between these features and the time series of ∆i values? How strong is the

evidence for the apparent relationship? How stable does the relationship appear to be over

time and market conditions? How reasonable is it to hypothesize that the relationship is at

least somewhat causal and will hold up as a model for how our actions may influence prices?

How directly do the features capture trading behaviors that are linked to our scheduling

decisions?

Let’s skip ahead a bit and assume we have reasonable answers to those questions for some

set of features. Not great answers - we don’t want to oversell it - but reasonable ones. How

will we go about building a scheduler from this? At this point, let’s assume we have what

we think are reasonable models for how the features of trading and quoting behavior we’ve

selected affect price movements, and a reasonable model for how our scheduling decisions

drive our contributions to those features. What’s still missing though, is a model of the wider

market’s contributions to the features. We could try to predict the market’s contribution

based on the information we have historically and in real time, but we shouldn’t really expect

to predict a single value with confidence. For the very basic feature of trading volume, we do

have some initial research on predicting this, and it is used in our existing VWAP algo (see

https://www.prooftrading.com/docs/vwap.pdf for more details). But for different features,

especially more complex ones, developing meaningful prediction models is likely to be a

separate new and challenging research task. Also, connecting multiple layers of models

together in order to output final scheduling decisions can be precarious, and may lead to

amplification of discrepancies between the models and reality.

For now, we prefer to take a more agnostic approach and model the contribution of the

rest of the market as a random process. What this will boil down to is averaging over market

conditions in our historical market data to determine the expected impact of our actions,

and not allowing ourselves to be overly swayed by real time information that is very noisy.

We can think of the wider market as a random process that serves up market conditions

for each interval, and we’ll try to compute the expected costs of our possible scheduling

decisions while accounting for this randomness. In other words, we can try to live with a

high degree of unpredictability in wider market behavior, rather than immediately trying to

tame it with further prediction models that output a single guess for a state of the market.

Whatever kind of random process we choose as our mental model of the wider market is

going to be heuristic and deviate significantly from reality. In choosing our model of general

market operation, we face similar tensions to what we face in choosing the features for our

model of price impact. If we choose a more complex model, it can potentially capture more

and more of the nuances of real market conditions and their evolution. If we choose a simpler

model, we are more likely to be able to fit its parameters in a robust and meaningful way

with a reasonable amount of historical market data. To navigate this tension, we begin with

a very simple model that is still capable of modeling the basic market dynamics that we

20

know we want to represent: price impact and price reversion. We discuss this in detail in

section 6.

Assembling all of these pieces together, we have: 1) a firm definition of features of trading

behavior that we believe can causally influence prices, 2) a model of how our scheduled

trading activity contributes to these features, 3) a model of how general market behavior

contributes to these features, and 4) a model of how these features contribute to price

movements. Using these in combination, we can begin to project the expected costs of our

possible scheduling decisions.

We should note here that the meaning of “expected” is the probabilistic one - where

we average over the costs of different possibilities weighted by the probabilities we assign

to them occurring. This kind of averaging can violate our intuition about what “expected”

means in a colloquial sense. For example, a purchased lottery ticket will either turn out to

be worth nothing in the likely event that it wins, or worth a lot in the unlikely event that it

wins. Averaging these two possibilities yields a modest positive expected value which doesn’t

correspond to either scenario in isolation. When we talk about mathematical “expectations,”

we aren’t talking about what we “expect” to occur in any particular case. We’re talking

about a weighted average over the possible cases for an event that is nondeterministic. This

weighted average corresponds more closely to reality when we think about many repetitions

of the same circumstances, sampled over and over again with fresh randomness. But for any

one particular instance, the expectation may be pretty far off from what precisely happens.

Ironically, that may even be “expected!”

va
lue

pro
b.

high
value
unlikely

low
value
likely

weighted
average

In designing trading algorithms, we are working in a setting where we will be facing the

same kind of circumstances over and over again, so making decisions based on what’s best

“on average” seems quite reasonable. However, even our computations of averages are likely

to be somewhat off due to noise, especially when we are trying to compute averages for

market conditions or actions that may be rare. This is a reason to place strong guard rails

around the possible scheduling decisions we consider with this methodology. The quality of

our projections of expected costs for possible scheduling decisions is likely to degrade quickly

as we deviate further from common, relatively low participation rates. Hence this kind of

modeling approach should not be relied up to evaluate proposed schedules that include heavy

21

trading flow for which it is hard to find a wealth of proximate examples in historical market

data.

This means that we need one more piece in place to translate the outputs of our research

process into a scheduler for our algo: we need a constrained set of possible schedules to

consider and compare. One constraint is clear: we should only consider schedules that

complete the total amount of trading we want to complete by the end of the allotted time.

We can also add caps on how much is scheduled in any particular time interval, say as a

percentage of the average daily volume (ADV) for that symbol. If we want, we can make

such caps a function of what time of day it is, or of the historical volume curve at that time,

etc.

Once we have a set of schedules that we want to consider and we feel reasonably good

about our ability to project expected costs for the schedules in this set with our research-

generated models, it seems we are in good shape! Easy, we might say. Let’s just compute the

expected cost for each of the reasonable schedules in our set, and then follow the schedule

that has the lowest expected cost. But not so fast, there is one remaining challenge.

The challenge is that the set of “reasonable” schedules is still too large for us to exhaus-

tively compute the expected costs for each schedule in it. As an illustrative example, imagine

that we divide the regular day into thirty-nine time intervals, each lasting ten minutes, and

for each interval we consider four possible amounts that we could schedule. Even if the last

interval becomes determined because we have to just schedule whatever we have left at that

point, this still represents 438 = 276 possible schedules. That’s just way too much for even

modern computers to handle. A general rule of thumb for gauging what computations are

feasible is: 210 is nothing, 220 is something, 250 is going to require specialized hardware, 280

is probably out of reach, and 2272 is about how many atoms there in the universe. So we’d

like to keep our computational burdens down in the 220 range or below if possible.

Luckily, there are ways to find the schedule with the lowest expected cost without needing

to compute the expected costs for every plausible schedule. One such way is called “dynamic

programming.” The main reason this works for our task is that the lowest cost schedule we

are looking for has a lot of convenient properties. Namely, if the lowest cost schedule trades

X units of volume in the last Y time intervals, than however it accomplishes that corresponds

to the lowest cost way to trade X units in the last Y time intervals. This means we can break

the problem into smaller pieces, solve for the lowest cost options for those individual pieces,

and then begin to assemble our solutions back into a full solution to the total scheduling

problem. This allows us to dramatically reduce the computational resources required to find

our solution. We go through this in more detail in Section 7.

This is especially important because we would like our cost estimates for proposed sched-

ules to be able to depend on real-time information. In particular, when we are making a

scheduling decision for the next time interval, we can know information about our recent

trading that we couldn’t have known at the beginning of the day. We can know, for instance,

22

how our most recent volume translated into the features that we are tracking. For a feature

like “the amount of volume trading at the NBB,” for example, our contribution to that

feature varies not only as a function of how much volume we schedule, but also as a function

of how quickly we are able to pick up passive volume and how frequently we end up needing

to the cross the spread. These are not things we will know with certainty until the interval

is over. If we can reasonably compute new cost estimates for proposed schedules of the re-

maining volume in real-time, we can take advantage of information like this once its known

to us, and potentially make choices for the upcoming interval that are better informed. This

will only work if the computation of the future schedule with the lowest expected cost is fast

enough to be continually performed on the fly during the trading day.

In the subsequent sections of this paper, we will describe the research underpinning our

choices for each piece of the infrastructure described above. This represents the initial form

of the scheduler we have designed to try to minimize price impact, subject to completing

a specified target amount of volume. We only invoke this scheduler for volumes that are

capped to a certain limit of the symbol’s ADV, in order to avoid relying on our models in

cases beyond our perception of their reliability. We expect this is merely the preliminary

form of an algorithm that we will quickly iterate on, and merely the beginning of a long

research agenda targeted and understanding price impact and how to minimize it for our

trading.

3 Data Normalization

As of the time of this writing (fall 2021), there are over 10,000 symbols trading on the US

equities markets. Hence the sample size of historical market data available for each individual

symbol is several orders of magnitude smaller than the sample size available if we accumulate

over all (or at least many) symbols. For modeling price impact, we suspect that the level

of noise in price data will be nearly overwhelming, and we’ll need all of the samples we can

possibly get. Hence, we will try to accumulate data over symbols for developing and training

our models.

Doing this requires several strategic decisions about how to normalize data so that it can

be meaningfully combined across symbols. Different symbols may trade at very different

price levels, in very different amounts. To make things a bit more apples-to-apples, we’ll

always look at size quantities relative to the ADV in a given symbol. In other words, instead

of considering raw counts of shares, we’ll divide those counts by the ADV and consider

percentage of the ADV as our primary unit of size. [Technical note: we calculate ADVs as

averages over the set of trading days included in the last 20 calendar days. We’ve considered

slight variations on this, like using 20 trading days or 30 calendar days, etc., and we’ve not

found any compelling reasons to prefer one over the others.]

23

5%

large sample size
low noise

small sample size
high noise

ADV

shares
traded

1 symbol

10,000
symbols

For prices, the ∆i values we have defined above already provide some normalization, as

they consider relative price changes over time intervals rather than absolute dollar amounts.

However, different symbols will exhibit different levels of variance in their typical ∆i values.

General market trends will also contribute to ∆i values, making them unlikely to be mean 0

over time periods where the market was generally up or generally down. Since our purpose

here is to understand price impact at a more localized level, we choose to take all of the ∆i

values for a given symbol over a given time period in our data set and center them at 0 by

subtracting their collective average from each of the individual values. We also divide by

their collective standard deviation in order to force the standard deviation of the normalized

values to be 1. In other words, we are taking a set of ∆i values that has an arbitrary

mean and standard deviation and forcibly scaling and adjusting it to have a mean of zero

and standard deviation of one. We do this for the ∆i’s of each symbol individually, over

time periods of 1 week at a time. When we compute the mean and standard deviation of

a collection of ∆i values, we weight the individual values according to the notional value

traded in each interval. (It would also be reasonable to weight all of the values equally for a

given symbol in a given week, but we generally weight things by notional value unless there

is a compelling reason to weight them otherwise.)

24

2

4

1

3

center ∆i values via
their collective
average (weighted by
notional value)

For each symbol,
collect ∆i values
over 1 week.

divide normalized ∆i
values by their
standard deviation to
get a resulting
standard deviation of
1.

result is a set of
values with a
mean of 0 and a
standard
deviation of 1.

s.d. = σ

s.d. = 1.0

0
µ (weighted avg)

(∆ - µ) / σ

∆i

∆i

σ (s.d.)

∆i

∆i
∆i

∆i

∆i

∆i

∆i

∆i

∆i

∆i

∆i Normalization

Performing this normalization on ∆i values has several consequences. One is that we have

forfeited any ability to model price impact at time scales of a week or longer. In exchange,

we have greatly reduced the confounding influence of wider market trends that obscure the

targeted effects we are attempting to model. Since here we are focused on designing a

schedule for intra-day behavior, we think this is a worthwhile trade-off. But doing this kind

of forcible transformation to make things mean zero and standard deviation one is not the

only way we could try to reduce confounding factors. Another approach would be to use

our distilling techniques, developed in our prior white papers on the topic of distilled impact

(available at: https://www.prooftrading.com/#section-research). We use these distillation

techniques currently to attempt to reduce the influence of wider market forces in our TCA

calculations. However, the amount of noise that can be removed through these methods

remains smaller than we would like it to be. We do not think that our distillation methods

are currently strong enough to normalize data across symbols for the tough task here of

training models relating noisy price data to behavioral trading features. We hope this will

change in the future as we improve our distillation techniques, and our impact modeling

tools.

Once we have normalized data for each symbol and each time period in our data set, it

remains to decide how to aggregate data across symbols. Here again, we choose to weight

each data point proportionally to its notional value. This ensures that data for symbols

whose trades cumulatively represent larger notional value will contribute more strongly to

25

our modeling than symbols whose trades cumulatively represent smaller notional value. In

essence, we are behaving here as if we expect that our own trading will ultimately be dis-

tributed across time and symbols similarly to the distribution of notional value across the

market.

4 Feature Selection and Modeling Price Movements

Deciding which features to compute, test, and ultimately keep as part of a model is typically

the hardest and most important part of any data science research. This project was no

exception. In fact, our feature selection process spanned well over a year, involved a lot of

false starts, and was ultimately re-invigorated by the launch of our VWAP algo. Watching

our first algo’s tactics in action spurred a few clearer ideas for how we might best capture our

low-level trading actions in simple features that we can also compute on historical market

data.

Our algo’s tactics involve two main behaviors: posting and taking. When we cross the

spread and take as a buyer, for example, we trade at the current NBO price. When we

post as a buyer, we join the current NBB price. Both of these actions, though in different

ways, potentially signal to the wider market that there is additional buying interest and may

ultimately drive prices up. To try to capture the effect of our taking behavior, we define a

feature on trade data that accounts for spread-crossing trades. To try to capture the effect

our posting behavior, we define a feature on quote data that accounts for events where size

increases at the NBB/NBO.

More specifically, we start by labeling each reported trade as occurring at the prevailing

NBB, at the prevailing NBO, or neither. For each 10-minute time interval and each symbol,

we sum up the volume of trading that occurred at the NBB, as well as the amount of trading

that occurred at the NBO. We compute the difference of these two sums, and then divide by

the ADV to translate it into our normalized volume units. This gives us one number whose

sign represents which side of the NBBO has experienced more trading, and who magnitude

reflects the size of the difference, relative to the ADV.

26

cross

cross1

2

for each 10 minute
interval in a symbol,
sum up the volume of
trading that occurrred
at the NBB, NBO.

Divide the difference of the
two sums by the symbol’s
ADV to translate it into our
normalized volume units,
round to nearest 0.1% of
ADV.

∆ ∆

at NBB

at NBO

10min

ADV

+1.3% ADV

1
MAR

39x 10min intervals
in a trading day

Volume at NBB/NBO Feature

Our approach to evaluating candidate features involves grouping together time period/symbol

combinations that have similar values for the features in training data and then seeing how

the (notional value weighted) average ∆ value of these behaves as a predictor for the ∆ value

of fresh testing data with those feature values. This grouping process is a very basic kind of

model that we can evaluate directly without having to do slightly fancier things like fitting a

linear function or a decision tree to the relationship between the features and ∆ values. This

grouping will only work well if we scale and round values in such a way that the groups con-

tain sufficient sample sizes, but also don’t conflate too many disparate situations and hence

obscure the features’ influence. This can be a tricky balance to achieve, but we can try a

few different roundings/groupings and see which ones provide better quality predictions on

the testing data. As a starting point for our volume at the NBB/NBO feature, we’ll round

to the nearest 0.1% of ADV. In other words, the nearest multiple of 0.001 ∗ ADV .

We also suspect that the difference between a value of, say 2.0% ADV and a value of

2.1% ADV for this feature may be less meaningful than the difference between a value of

0.1% ADV and a value of 0.2% ADV. As the values get higher in magnitude, we are likely

to see sample size at each 0.1% increment drop off sharply, and the meaningfulness of these

distinctions degrade. To reduce the clutter and overhead in our computations over large

swaths of historical data, we capped our feature value at 1.5% ADV, grouping together all

observations at +1.5% ADV and above, and grouping together all observations −1.5% ADV

or below. With this cap in place as well as the rounding to the nearest multiple of 0.1%

ADV, we can ultimately view this feature as an integer ranging from −15 to 15. We call this

feature “volume pressure,” and we think of it as trying to capture the “pressure” exerted on

price by the (im)balance of trading volume happening at the NBB/NBO.

27

1.3
1.2

-1.2
-1.3
-1.4
-1.5
-1.6
-1.7
-1.8

1.8
1.7
1.6
1.5
1.4

Interpret imbalance in
NBB/NBO as a range
of integer values from
-15 to 15. We call this
the “volume pressure”

grouping all
observation above
1.5% ADV

grouping all
observation below
-1.5% ADV

15

15

-15

-15

Capping
Volume
Pressure

We also define a feature that we compute from the top-of-book quotes within each 10-

minute time interval for each symbol. First, we use the top-of-book quotes to construct

the NBBO at each moment in time. In this process, we construct the sizes available at the

NBBO as well the prices, and we keep track of all size changes to the NBB or NBO, even

when they do not represent price changes. Each time the size at the NBB increases while

the price stays the same, we label this as a “bid joining event,” and we define the size of the

event to be the amount of increase in the size available at the NBB. Similarly, each time the

size at the NBO increases while the price stays the same, we label this as an “ask joining

event,” and we define the size of the event to be the amount of increase in the size available

at the NBO.

For each time interval and symbol, we sum up the sizes of all the bid joining events and

all of the ask joining events. We compute the difference of these two sums, and divide it by

the ADV. This gives us a number whose sign indicates which is more popular to join, the

NBB or the NBO, and whose magnitude reflects the size of the difference. A couple things

to note here: first, we do not consider the establishment of a new price level to be a “joining”

event. Second, we do not track events where size decreases. For example, if the NBB stays

at the same price but the size available changes from 2 lots to 6 lots, then to 4 lots, then

to 7 lots, there are two NBB joining events in that sequence: the increase from 2 lots to 6

lots, and the increase from 4 lots to 7 lots. These will contribute a total of +4 + 3 = +7 lots

to the sum of NBB joining events. We do not track the decreases or whether they represent

trades or cancellations, etc.

Like our volume pressure feature, the difference between the two resulting sums (nor-

malized by ADV) is rounded and capped. This time, we round to the nearest third of a

percent of ADV, i.e. 0.00333 . . . ADV. (We rounded this a bit more coarsely because the

28

numbers tend to be a little bigger than the traded volume numbers were, so we seem to get

similar differentiation with a slightly coarser rounding.) After rounding and translating to

integer multiples of 0.0033 . . . ADV, we again applied a cap of 15 on the magnitude, grouping

together all observations beyond this cap. We call this feature “join pressure,” and we think

of it as trying to capture the “pressure” exerted on price by the (im)balance of demand

indicated by parties joining onto the NBB vs. the NBO.

join join

Track size increases to the NBB and
NBO as bid joining events and ask
joining events. Ignore any size
decreasing events such as trades
and cancellation.

for each time inteval and
symbol, we sum up the sizes of
all big joining events and all ask
joining events. Then compute
the differences between the two
sums, divided by the symbol’s
ADV to get normalized value.

round to multiple
of 3.33% ADV,
cap vaue
between 15 and
-15

bid joining
event

ask joining
event

NBB
NBO

10
.16

10
.09

10
.08

10
.17

∆ ∆
ADV

Join Pressure
Feature

There are a lot of nuances to the definitions of our volume pressure and join pressure

features, and there are many similar but slightly different ways we could have defined them.

We suspect that most of those variations would yield similar results. We choose these versions

because they keep closely in spirit to our own trading behavior. We choose these roundings

and caps because they seem to lead to a level of aggregation that is manageable for computing

over several months of historical market data, and as we will see shortly, a level of precision

that is likely more granular than we ultimately need. Indeed, we will further round more

coarsely later in order to reduce over-fitting.

cross join cross join

volume
pressure

join
pressure

price volume
pressure

join
pressure

priceExpectation

29

We expect that more volume at the NBO vs. the NBB and more joining at the NBB

vs. the NBO will generally push prices up, and the opposite signs will generally push prices

down. We also suspect that price impacts will vary a bit throughout the day: in particular,

we would like to account for different effects in the morning just after the open and nearing

the end of the day going into the close. For this, we add a very simple feature that takes

three values: 0,1,2. We mark as “0” any time periods that are before 10 am, as “1” any time

periods between 10 am and 3:30 pm, and as “2” any time periods from 3:30 pm until 4 pm.

0,1,2

2
ToD

0 1 2

9:3
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

Date Time Feature

We also suspect that there will be reversion effects. If one of our pressure gauges is dialed

up for one time interval and then dialed back down in the next, we might guess that the price

will revert a bit, rather than responding merely to the new pressure value in isolation. To

enable us to see and model this kind of effect, we add features for the values of the volume

pressure and the join pressure in the previous time interval.

Putting this all together, for each ten minute time interval and each symbol, we compute

eight things:

1. the volume pressure for the trading in that interval, as an integer from −15 to +15.

2. the join pressure for the quoting in that interval, as an integer from −15 to +15.

3. the volume pressure for the trading in the previous interval, as an integer from −15 to

+15.

4. the join pressure for the quoting in the previous interval, as an integer from −15 to 15.

5. the time of day indicator, as an integer from 0 to 2.

6. the ∆ value, i.e. the natural logarithm of the ratio of the last trade price in the interval

over the last trade price in the previous interval.

7. the notional value traded in this symbol and interval.

8. the notional value traded in this symbol in the previous interval.

30

The last two of these items, the notional values, are computed because we will be using

them later for weighting purposes.

cross

V/P

join

J/P

cross

V/P

join

J/P

0,1,2

2
T/Invnv

volume
pressure
-15 → 15

join
pressure
-15 → 15

time of day
indicator
0, 1, 2

volume
pressure
-15 → 15

join
pressure
-15 → 15

notional
value
traded

currentprevious

10min10min

∆ value

notional
value
traded

Computations
for each 10min
Interval

Since several of these items mention “the previous interval,” it is not clear what to do

for the first ten-minute interval of the day, from 9:30 am to 9:40 am. One reasonable option

would be simply exclude these intervals, since they don’t have well-defined values for all

of the features we are attempting to study. Another reasonable option would be to define

the previous pressure gauges as zero, and use the first trade price in the interval as the

denominator for ∆ instead of the last price of the previous interval. Currently we just

exclude them.

Once we have collected these values across all of the 10-minute time intervals for a

given symbol in a given week, we compute the average and standard deviation of the ∆

values (weighting by notional value). Employing common statistical notation, we’ll use µ

to represent the weighted average (aka expected value), and σ to represent that standard

deviation. We’ll then normalize our ∆ values by performing the following transformation:

∆̃ := (∆− µ)/σ.

Going forward from this point, we will work only with the adjusted ∆̃ values and can discard

the original ∆ values. We note that µ is a term representing overall price movement, and

will not show up as part of our later impact calculations. But σ is a term that roughly

represents price volatility, and will reappear later as we translate our general model of the

relationship between trading behavior and prices into expected costs of contemplated behav-

ior in a particular symbol. In this way, we are enabling our model to account for the fact

that the magnitude of price impact can be greater when volatility is greater.

Our next step is to aggregate all of this collected and normalized data across weeks and

symbols into two data sets: one for training our feature models, and one for testing the

quality of the trained models. It is simplest to make these data sets disjoint, so that we

can interpret the results without having to be concerned about nuances that arise when the

31

data sets are overlapping. [Aside: training and testing on the same data is a bit like leaking

the exam questions to students before the test. The results become much less representative

of true knowledge.] We could do this by collecting the training and test data over disjoint

weeks or months. Another simple way is to flip a random coin for each data point to decide if

it should be assigned to the training or the testing data set. This may result in the training

and testing data sets being more similar to each other, as they are not covering disparate

time periods that may have different market dynamics. Since we expect feature selection

and modeling to be a hard task in this noisy environment, we choose for now to do the coin

flip method, and flip the coin independently for each set of 7 collected values. This is a little

weird in our case, as our features about the prior interval mean there is some dependence

between adjacent observations. But we do not expect this to cause any significant issues.

We could address this by fixing the outcome of the coin flip at the level of symbol/day, but

there would still be some implicit dependence across days in the same symbol due to our

adjustment of the ∆ values. This is a rabbit hole we choose not to go down.

Once we have our training and testing data sets, we are ready to build a basic model

on our training data and evaluate it on our testing data. We’ll start with a model that

just computes a notional value weighted average ∆̃ value for each combination of feature

values in our training data. To evaluate the model on our testing data, we’ll match up each

observation in our testing data with the average ∆̃ value computed for the training group

with the same combination of feature values. We’ll refer to this average ∆̃ value as ∆̃p

(where the p denotes that is our prediction, based on training data). The real ∆̃ value for

the testing data point we’ll denote as ∆̃r. The squared error of our prediction for this data

point is then computed as:

(∆̃p − ∆̃r)
2.

We’ll average these squared error values over all data points in our testing set, weighting

them by notional value. We’ll refer to this basic style of model as a “table lookup” model.

32

0,1,2

2
T/I

AAPL

22
MAR

23
MAR

24
MAR

25
MAR

26
MAR

s.d. = 1

cross

V/P

join

J/P

5 13 0

-11 7 1

14 -8 2

1

2

3

4

Aggregate
normalized ∆i
values across
weeks and
symbols.

normalize ∆i values
∆i

normalized ∆i
values has a
mean of 0 and
a standard
deviation of 1.

split data
into 2 sets

training
data

model computes NV-weighted
average ∆(~) value for each
feature combination in training
data

build a model on
training data and
evaluate it on testing
data

match up each observation in testing
data with average ∆(~) value

computed for training group with the
same feature value combinations

feature value
combinations

testing
data

(∆i - µ) / σ

Table Lookup Model

Once we have an NV-weighted average squared error, how do we know if it is “good”

or “bad”? Clearly, if we compare two models to each other, we would prefer the one with

the lower of the two average squared errors. We should not neglect though, the necessity of

including a very simple baseline. Sometimes all of our more complicated models are “bad,”

and we shouldn’t blindly take the best performing one as meaningfully good. For this case,

our baseline will be a “model” that merely predicts 0 as the ˜Deltap value, regardless of any

of the feature values.

We collected data for the top 1000 symbols in terms of notional value over the three

month period from April 1, 2021 to June 30, 2021. Computing our features over this set of

symbols and days takes a considerable but reasonable amount of computation power. Since

we are weighting everything by notional value anyway, we don’t expect that it would be

worthwhile to compute the features over all of the remaining symbols, given that it would

take a large amount of computational resources and the top 1000 symbols typically represent

the majority of the notional value traded.

We split this data into roughly equally sized sets as training and test data by assigning

33

each data point to one or the other uniformly at random. As a first test, we left our pressure

features all at the granularity of a scale from −15 to 15 and computed the NV-weighted

squared error for our baseline as well as our basic (aka “table lookup”) model. At this

granularity, some combinations of features values occurred only in the test data or only

in the train data, making the lookup approach quite precarious. Even generously limiting

ourselves to the cases where the test data features did appear in the training data, the

model’s squared error was ... drum roll please ... 1.08 times the baseline. So this does worse

than nothing basically. But hey, at least we worked really hard for it!

This isn’t too surprising, and doesn’t mean we have to go back to the drawing board

(though we did that too a few times over the course of this research). An integer scale from

−15 to 15 means that each pressure gauge can take on any one of 31 values, and we actually

have four pressure gauges: two for the volume and join pressure in the current interval,

and two for the previous interval. These means that the pressure gauge values alone can

potentially drive the lookup table size to be as big as: 314 = 923521. Having a table with

this many possible values can unsurprisingly lead to the sample size behind each value often

being insufficiently small. Once the data is collected though, it’s easy to regroup the data

more coarsely along the same features to make the table smaller and the samples behind

each value larger. (That’s why it’s typically wise to start with something too granular. If

you start with collecting data that is already rounded to be too coarse, you have to recollect

all of the data from scratch to get greater precision.)

As a next step, we can try grouping our ranges from −15 to 15 into coarser categories,

using multiples of 5 as boundaries. In other words, we’ll group together the values 11, 12,

13, 14, and 15, and group together the values 6,7,8,9,10, etc. We’ll let 0 be its own group.

If we do this, essentially all combinations of values occur in both the test and training data,

and we get a model whose squared error is about 0.86 times the baseline. This is looking

much more promising - at least we’re beating the baseline!

We may pause for a moment here and wonder though - should we be grouping higher

values together in the same way as we are grouping lower values? This uniform approach

to grouping makes a lot of sense when values are somewhat uniformly distributed, but that

may not be the case for our data. Let’s take a look and see! At the finer scale from −15

to 15, let’s plot the total notional value that occurs over our data set for each of our two

pressure gauges. Here’s the plot for volume pressure:

34

-15 -10 -5 0 5 10 15
0

1

2

3

4

1e12

This shows a concentration in smaller values, and suggests that we may want to aggregate

less coarsely when we are close to 0 and more coarsely as we get out to higher absolute values.

Note that the visually strange behavior of curling up at −15 and 15 is expected, since we

capped the volume pressure values. The notional value on these end points represents the

accumulation of all notional value at and beyond the end point, so we are seeing the total

size of the tails here.

Here’s the same plot for join pressure:

-15 -10 -5 0 5 10 15

0.5

1.0

1.5

2.5

2.0

3.0

1e12

This also shows some concentration toward lower values, but the accumulated tails are

much larger in proportion here than they were in the volume pressure distribution. This is

a notable phenomenon that could be interesting to further investigate.

For now though, we’ll just try to define a reasonable grouping scheme that zooms in on

the concentrated region near 0. A very simple way to do this is to make the caps much

lower than 15. For example, we could group together all of the values of 5 and above (and

group together all of the values of −5 and below), while retaining the distinctions between

all values in the range from −4 to 4. As it happens, this particular choice does better than

our baseline, but a little worse than our original uniform grouping. It achieves a squared

error that is about 0.88 times the baseline.

35

If we get a little more aggressive and move our caps all the way to −3 and 3 respectively,

however, we do slightly beat our uniform grouping and achieve a squared error that is about

0.85 times the baseline. If we move them even further to −2 and 2, we get a squared error

that is about 0.84 times the baseline. If we go all the way to capping at 1 (i.e. distinguishing

only between 0, positive values, and negatives values), we get a squared error that is 0.85

times the baseline again. This indicates that nearly all of the predictive power of these

features is contained in their signs, rather than their magnitudes. We’ll fix the caps at −2

and 2 for now, as this performed the best of the options we tried.

-5

0

-10-15 5 10 15 -5-10-15 5 10 15 -5-10-15 5 10 15 -5-10-15 5 10 15 -5-10-15 5 10 15 -5-10-15 5 10 15

11-11 -6 61-1

cross

V/P

join

J/P

groupings
outside -4 to 4

groupings of 5,
except 0

groupings
outside -3 to 3

groupings
outside -2 to 2

0.88x

no
groupings

1.08x
error

baseline

0.86x 0.85x 0.84x

groupings
outside -1 to 1

0.84x

Optimal Grouping of
Feature Values

We should also check if any obvious subsets of our features contains as much predictive

power as the full set. For instance, should we really be including both pressure gauges, or is

it as good to have only one? It would be worthwhile to explore single pressure gauges that

combine our two kinds of pressure, but we leave that as a topic for future research. For now,

we confirm that including only our volume pressure gauge and omitting our join pressure

gauge would be inferior (we get a model squared error that is 0.89 times the baseline), and

similarly that including only our join pressure gauge and omitting our volume pressure gauge

would be inferior (we get a model squared error that is 0.91 times the baseline). Omission

of our time-of-day feature or of the pressure gauge values in the previous interval causes

only a very slight detriment to performance, suggesting that these features are even weaker

in predictive power than the two pressure gauges for the current interval (whose predictive

power we know is mostly driven by their signs).

It is probably not a great idea for us to continue testing too many possible groupings

or subsets of features on this same training and testing data set, as the noise is very high

and the relative performance margins are very tight. We are likely to start falling prey to

coincidences and over-fitting. So what we’ll do now is fix our feature set to signed volume and

36

join pressure gauges capped at an absolute value of 2 for the current and previous intervals

and a 3-valued time-of-day feature. We’ll perform a robustness test on this feature set by

training and testing it on fresh data from a different time period, in order to gain some

further confidence that this approach at least performs reliably better than our (very dumb)

baseline.

0,1,2

2
T/I

cross

V/P

join

J/Pvolume
pressure
-2 → 2

join
pressure
-2 → 2

time of day
indicator
0, 1, 2

This time, we’ll take data from August 1, 2021 through September 1, 2021, and again

divide it into disjoint training and testing sets. Using this same feature set yielded a model

squared error that was 0.85 times the baseline for this time period, which is eerily close to

the performance on our original data set above. [Aside: kind of creepy, but what can you

do?]

5 Mapping our Scheduling Decisions to Features

We will also need to build a rudimentary understanding of how our scheduling decisions

influence the features we’ve selected. Directionality at least is clear: if we schedule more

shares to buy in an upcoming time interval, we should expect to create some NBB joining

events and some taking events where we cross the spread to trade at the NBO. We expect

our effect on both pressure gauge features to be in the directions that exert upward pressure

on prices. Conversely, when we schedule more shares to sell in an upcoming time interval,

we should expect to exert downward price pressure. But exactly how much pressure do we

expect to inject on each gauge?

The relationship between our scheduling decisions and the pressure gauges is intermedi-

ated by other market participants. If the NBBO moves around considerably while we are

posting, we will be periodically repegging and thus increasing our effect on join pressure.

If we are not getting enough passive fills, we will be crossing the spread and increasing our

effect on volume pressure. Hence, the translation of our scheduling decisions into our con-

tributions to the pressure gauges is driven by the combination of our lower level tactical

decisions and the actions of potential counter-parties.

We can learn about average outcomes for this translation process by examining our own

recent trading data. For every time interval/symbol/side we traded, we can compute the

total volume we traded, the total volume we traded at the far side, and the total size of all

our posted orders that joined the near side. Dividing these values by the ADV and adjusting

the sign appropriately based on whether we buying or selling, we obtain our contributions to

37

the volume pressure and the join pressure features. In this way, we can collect data points

from our own recent trading data to study the relationship between our scheduled quantities

and our resulting effects on the pressure gauges. A few technical notes are in order. First,

before we launch the trading algo whose scheduler design we are documenting here, all of our

live trading data is from the trading we have done using our VWAP algo. We still expect

this data to be indicative of what we expect for our new algo on a tactical level, as it is the

higher level scheduler that will be different, not the lower level tactics. Second, we may treat

traded volumes and scheduled volumes as equivalent for our purposes here, as it is always the

intention for the algo to trade its full scheduled quantity within each specified time period.

[Aside: if this doesn’t happen, it is because of external constraints, like a client’s specified

limit or a halt in the symbol, etc.]

We have only been live trading since March of 2021, so our trading data so far is fairly

limited in quantity. It is unlikely to support overly complex analyses (or really, reasonably

complex analyses), so we’ll start with something pretty simple. We’ll divide each trading

day for each symbol and side into disjoint 10-minute intervals, and in each interval we’ll

compute:

1. the sum of the notional value we traded

2. the sum of the volume we traded

3. the sum of volume we transacted at the far side

4. the sum of the size of our near-side joining events

We also compute the ADV for each symbol, so that we can divide and scale the values

of 3. and 4. above to be in the same units as our final definitions of the volume pressure

and join pressure features. We also divide the value of 2. by the ADV so that our volumes

are in units relative to the ADV rather than in absolute numbers of shares. We round these

relative volumes to the nearest multiple of 0.001 ∗ ADV .

We next group these data points by their rounded relative volumes. What we have now

is a group of samples of times when we traded roughly 0.1% of the ADV within a 10-minute

time period, a group of samples when we traded roughly 0.2% of the ADV within a 10-minute

time period, and so on. Within each group, we can take a notional value weighted average of

the volume pressure and the join pressure features. This yields a look-up table that we can

use to answer questions like: “when we schedule X% of the ADV for a 10-minute interval,

what amount of join pressure and volume pressure should we expect to create?”

38

cross

V/P

join

J/P

cross

V/P

cross cross

V/P

join

J/P
1

MAR

2
MAR

1
OCT

nv

0.1%
ADV

total
notional

value traded

group by relative
volume traded
(% of ADV)

calculate notional value
weighted average of
feature values in group

from each 10min interval,
compute below values...

total
volume
traded

total volume
transacted

far side

total near
side joining

events

%
ADV

avg avg

2
3

create lookup table that
maps % of ADV traded
(in 10-minute interval) to
resultant join and
volume pressure.

4

1

Map %ADV to Features

In the next section, we’ll get away from modeling only our activity, and try to zoom out

to a basic model that considers the extraneous market behavior as well.

6 A View of the Market as a Random Process

In probability theory terms, a random process is one that transitions through a sequence

of states, where each state is chosen probabilistically from a distribution that may depend

on the prior states. We can think of the current values of our two pressure gauges and the

value of our time-of-day feature as together constituting a market state, and the market as a

probabilistic process that transitions from one state to the next at regular time increments.

For now, we’ll consider a very simplistic kind of transition. The time-of-day feature

will transition in a deterministic way as we move through the time intervals of the trading

day, and the pressure gauges will sampled freshly and independently at random each time

from the conditional distribution over market states with the appropriate fixed value for the

time-of-day feature. [Aside: this extremely basic random process as a heuristic model of the

market is a prime target for improvement as we continue our research and iteratively build

up a more nuanced understanding.]

We can imagine that historical market data gives us a source of information about these

distributions without our trading in it. More precisely, we can see how notional value typically

39

distributes across the possible states. We can view this as a probability space defined by

the random dollar: if we choose a dollar uniformly at random from all the dollars traded,

what is the probability that the market was in a particular state i while that dollar was

trading? We can answer this question generally, or conditioned on a particular fixed value

for the time-of-day feature. These are the kinds of things we can compute by calculating the

state and the notional value corresponding to each symbol and time interval in our historical

market data set.

Even if the market really were a random process (and it’s not!), our computation of

these “probabilities” wouldn’t correspond exactly to the true probabilities. So we’re being

a little lazy here when we say we’re computing probabilities. What we’re actually doing is

empirically estimating probabilities as if our historical market data was generated according

to an underlying random process. Nonetheless, we soldier on.

Next we have to think about how we imagine our trading activity blending into this

process. One way we can imagine it is: each interval, the market process tentatively serves

up a new random state. Then the effect of our activity is added to the pressure gauges, and

these summed features become the actual next state.

Let’s now imagine that the trading day evolves as a sequence of steps of our interaction

with this random process. In each interval i, we’ll let Si denote the state of the process,

which is a vector with three entries containing the values of the two pressure gauges we

have defined as well as the time-of-day feature. In other words, Si := (Vi, Ji, Ti), where Vi
denotes the volume pressure gauge value in interval i, Ji denotes the joining pressure gauge,

and Ti denotes the time-of-day feature value. We’ll let Mi denote the tentative state that

is sampled by the process for state i before our activity is included, and we’ll let Fi denote

a vector containing our contributions to the pressure gauges in interval i. We then have:

Si = Mi +Fi. We note that Fi is a probabilistic function of the amount of volume we choose

to schedule in interval i. We’ll denote that amount of volume as vi, so we can say that

Fi is sampled from a distribution that depends on vi. We further hypothesize that a price

evolution term, ˜Deltai, is sampled for each interval i from a distribution that depends on

Si as well as Vi−1 and Ji−1. [Note: this inclusion of the prior pressure gauges enables us to

model price reversion effects from one time interval to the next.]

If we suppose this process is happening for a particular symbol, we can fix a typical

standard deviation value σ for this symbol to translate each ∆̃i into a multiplier of eσ∆̃i that

represents the ratio between the price at the end of the interval over the price at the end of

the previous interval. In other words, we can model the price Pi at the end of i intervals as:

Pi = P0

∏
j≤i

eσ∆̃i ,

where P0 represents the opening price.

If we are, say, buying volume in this symbol over the course of the trading day, the

prices for our trades will vary considerably from these checkpoint Pi values. As a simple

40

approximation though, we will suppose that all of our volume that trades in interval i will

occur at the price Pi. This allows us to express the total cost of our purchased shares as:∑
i

vi ∗ Pi = P0 ∗
∑
i

vi
∏
j≤i

eσ∆̃i = P0

∑
i

vie
σ
∑

j≤i ∆̃i .

A few things to note here. First, P0 is just a constant term that we can essentially ignore,

so we’ll set it to 1 and stop writing it in our expressions going forward. Second, when we say

“total cost” here, we are not including the myriad fees that accompany the execution of our

transactions, as well as the slippage and variance we would expect to see when comparing

our real prices to the Pi values. Third, the vi’s are values we control, but the ∆̃i’s are random

variables we merely influence through our effect on Fi’s which in turn affect Si’s as described

above.

Given a fixed set of values vi, we can define the expected cost function:

C(v1, . . . , vN) := E

[∑
i

vie
σ
∑

j≤i ∆̃i

]
=
∑
i

viE
[
eσ

∑
j≤i ∆̃i

]
.

Given all of the layers of indirection here (that ∆̃i depends on Si and Si−1, which depend

on Fi, Fi−1, which depend on vi and vi−1 (as well as the time-of-day feature for the interval

corresponding to index i), this formula is still quite complicated and difficult to work with. In

addition, the quality of our feature selection and modeling in this rather noisy environment

is likely too poor to support a highly nuanced form for all of these related probability

distributions. As a result, we will employ a simplifying heuristic and treat the relationships

between vi and Fi as well as the relationships between Si, Si−1 and ∆̃i as if they were

deterministic, always taking on the values of their expectations. [Note: this is a highly

suspect thing to do, and we feel this is another prime target for improvement as we continue

our research and build up better feature selection and modeling.]

Under this heuristic, we can rewrite our cost estimate as:

C(v1, . . . , vN) :=
∑
i

vie
σ
∑

j≤i E[∆̃i]

Let’s consider this term E[∆̃i] in isolation for a moment. We’ll treat the time-of-day

feature as having a fixed value ti. If we let S represent the set of all possible market states

with Ti = ti (i.e. iterating over all possible pairs of values for our pressure gauge features),

we can write this as:

E[∆̃i] =
∑

mi,mi−1∈S

P(mi|ti)P(mi−1|ti)E[∆̃i|si, si−1, ti],

where si := mi + fi and si−1 := mi−1 + fi−1. Under our heuristic that treats fi and fi−1

as deterministic functions of vi, vi−1, we can estimate this quantity from recent historical

41

market data as follows. For each symbol and pair of adjacent time intervals in our data

set, we compute the notional value traded in each interval and take the product of the two.

This represents a weight that is proportional to the probability of this observation as a

sample for (mi−1,mi) under the joint (independent) probability distribution we’ve defined

(conditioned on ti). We also compute the state values for each of the adjacent intervals,

and the ∆̃ value. Next we can aggregate all of the observations that share the same pair

of adjacent state values and compute the average ∆̃ value, under the weights of our joint

probability distribution. For each pair of state values (si−1, si), we’ll let Wsi−1,si denote the

sum of all the weights of observations with these state values. We’ll let ∆̃si−1,si denote the

weighted average of the ∆̃ observations with these state values (relative to these same joint

distribution weights). [Technical note: there is one nuance here that we are being cavalier

about - the value of ti−1 is part of the state for interval i− 1, so terms like P(mi−1|ti) should

really be conditioned on both ti and ti−1. However, tracking and conditioning on ti−1 as well

as ti would further split our data and increase our risk of over-fitting. Given how weak the

time-of-day feature seems to be in terms of its predictive power, we choose not to do this

further conditioning.]

We note thatWmi−1,mi,ti is proportional to the P(mi|ti)P(mi−1|ti), and ∆̃si,si−1
= E[∆̃i|si, si−1].

We then have:

E[∆̃i] =

∑
mi,mi−1∈SWmi−1,mi,ti∆̃mi−1+fi−1,mi+fi,ti∑

mi,mi−1∈SWmi−1,mi,ti

.

This is for fixed values of fi−1 and fi, so we could think this as a function of fi and fi−1. In

turn, we are heuristically viewing each fi as a deterministic function of vi for now, which we’ll

denote by fi := f(vi). Putting this together, we can think of and denote this expectation as

a function of vi,vi−1, and ti:

∆(vi, vi−1, ti) :=

∑
mi,mi−1∈SWmi−1,mi,ti∆̃mi−1+f(vi−1),mi+f(vi),ti∑

mi,mi−1∈SWmi−1,mi,ti

.

We can plug this representation into our overall cost function:

C(v1, . . . , vN) :=
∑
i

vie
σ
∑

j≤i E[∆̃i] =
∑
i

vie
σ
∑

j≤i ∆(vj ,vj−1,tj). (1)

This gives us a cost function that we can compute for any specified values of σ and

v1, . . . , vN . Computing the ∆(vi, vi−1, ti) values from historical data is a time-intensive pro-

cess, but we can collect and aggregate data over a few months of data and compute these

for all reasonable vi and vi−1 within a day or so. It is important to remember that we’ve

employed many heuristics here as well as empirical estimates. In particular, we should not

expect these estimates to behave well if we attempt to do this for rather unusual/extreme

values.For modest values of the vi’s, however, we can perform sanity checks to see that these

estimates behave reasonably and match with our general intuition.

42

So what should we generally expect from ∆(vi, vi−1, ti) as a function? Well, it’s easier

to reason about if we fix two of the three input values at a time and look at the behavior

as the one remaining input varies. Here are the three intuitive behaviors we might guess

we will/should see in those cases (all assuming that our volume vi is on the side of buying.

Things are analogous with reversed signs for the case when we are selling).

1. If we fix vi−1 and ti and vary vi, ∆ will be an increasing function of vi.

2. If we fix vi and ti and vary vi−1, ∆ will be a decreasing function of vi−1.

3. If we fix vi and vi−1, ∆ will be largest when ti = 0 and smallest when ti = 1.

The first of these guesses comes from our basic hypotheses of how our pressure gauges will

behave. More buying “pressure” in the current interval should lead to an increasing price,

while more selling pressure should lead to a decreasing price. The second comes from our

intuitive sense of reversion: some expectations of the market based on the prior interval may

be baked in, so the response to the behavior in the current interval will be filtered through

that lens. An interval with a certain fixed amount of pressure is likely to have more impact

when it follows a lower pressure interval than when it follows a higher pressure one (or at

least, that’s our hypothesis). The third item above comes from our intuition that trading is

most volatile in the morning, so impact may be heightened then, while impact is likely to

be dampened in the middle of the day and then perhaps pick up a little again heading into

the close.

We further have expectations about the relationship between vi values and fi values

(which we are treating as deterministic by computing its average and using solely that). We

expect that increases in vi when we are buying, for example, will lead to increases in the

pressure gauges on average (in the direction that pushes prices up). [Aside: this expectation

holds up on our preliminary experimental data.] So in essence item 1. above is proposing:

if we fix the value of the ti and the fi−1 values for the previous interval, as well as one of the

two pressure components of fi for the current interval, we expect an increasing function as

we increase the other component of fi in the current interval i (which is the only remaining

non-fixed variable).

We won’t detail every example of possible fixed values here as that would quickly become

unwieldy, but we’ll spot check a few and then attempt to give a holistic sense of how true

these three suppositions are for our empirically estimated ∆ function.

For a quick spot check on item 1., let’s start with the example where ti = 0, both

components of fi−1 for interval i− 1 are set to 0, and the volume pressure gauge component

of fi for interval i is set to 0. As the join pressure gauge component of fi for interval i

increases from 0 to 4, we get the following values for ∆ (in order and rounded to the nearest

two decimal points): 0, 0.38, 0.46, 0.62, 0.92. These values are increasing, as we expected. If

43

we do the same thing but now fix the current join pressure component of fi to 0 and let the

current interval’s volume pressure component go from 0 to 4, we get the following values for

∆: 0, 0.38, 0.63, 0.90, 1.27. These are again increasing.

For a quick spot check on item 2., let’s look at the example where ti = 1, both pressure

gauge components of fi in the current interval are set to 0, and the volume pressure gauge

component of fi−1 for interval i− 1 is also set to 0. As the join pressure gauge component of

fi−1 increases from 0 to 4, we get the following values for ∆: 0,−0.14,−0.15,−0.16,−0.29,

which are decreasing, as expected. Doing the same thing but setting the prior join pressure

component to 0 and varying the volume pressure component of fi−1, we get ∆ values of

0,−0.08,−0.12,−0.22,−0.27.

For a quick spot check on item 3., let’s look at the example where all of the pressure

gauge components of fi and fi−1 are set to 1, and the time of day feature varies from 0 to

2. In this case, we get ∆ values of: 0.32, 0.19, 0.25. This conforms to the pattern we expect.

(Note that the example of all pressure gauge components of fi and fi−1 being set to 0 just

shows flat 0 ∆ values despite variation in ti, so this is uninteresting.)

It’s not too hard, however, to find examples where our empirical results do not conform

exactly to these expected patterns. For example, if we vary the time-of-day feature again

while setting almost all of the pressure gauge components to 1 but setting the current

interval’s volume pressure gauge component to 2, we get ∆ values of: 0.51, 0.44, 0.28. So the

trend of the morning’s value being largest still holds, but now the late day number is less

than the mid-day one. (Note that as would we expect, these impact estimates are larger

than the estimates when all of the pressure gauge components of fi and fi−1 were set to 1.)

There are lots of possibilities for how we can fix a subset of the variables and study the

behavior of this ∆ function. For now, what we’ll do is iterate through the various fixed

settings for each of the cases 1 through 3 above and compute the ordering of the ∆ values

as the remaining variable varies, from lowest to highest. For example, a strictly increasing

function corresponds to the ordering 1,2,3, while a strictly decreasing function corresponds

to the ordering 3, 2, 1. We’ll then count how many occurrences of each ordering we see as

we iterate through the possible fixed values of the other variables.

We’ll start with looking at cases where the volume pressure component of fi varies, with

all other values held constant. Iterating over the all combinations of the three values for

the time-of-day feature and values 0,1,2,3,4 for the other pressure gauge components of fi
and fi−1, we are examining a total of 375 functions of the volume pressure component of

fi. Of these, 297 are strictly increasing (this is nearly 80% of them). The vast majority of

the remainder display one transposition in the ordering: e.g. the ordering is something like

0,2,1,3,4 instead of 0,1,2,3,4, so there is just one switch of two adjacent values as compared to

the expected ordering. Only 16 of the total 375 orderings display more than one transposition

as compared to the default ordering of 0,1,2,3,4.

We can do the analogous computation for what happens as the join pressure component

44

of fi varies. In this case, 222 of the 375 orderings match the default ordering of 0,1,2,3,4 for

a strictly increasing function. This is about 60% of them. If we include orderings just one

transposition away from this default, we cover 314 of the 375 orderings.

Next we do the same computation for what happens as the volume pressure component of

fi−1 varies. Here we expect to see a lot of the opposite ordering, 4,3,2,1,0, corresponding to

a strictly decreasing function due to reversion. The concentration on this ordering is weaker,

but that is mostly what we see. Of the 375 orderings, 105 of them match 4,3,2,1,0, which

is by far the mode. If we include single transpositions away from this ordering, we cover a

total of 200 of the 375 orderings (about 53%).

Doing the same analyses for the join pressure component of fi−1, we get weaker but still

reasonable results. The ordering of 4,3,2,1,0 remains the clear mode, occurring 56 times out

of 375. If we include single transpositions, we cover 142 of the 375 orderings.

For the time feature varying, we are iterating over five values for each of the four pressure

gauge component variables, which means we are examining 625 orderings. For these, the

standout mode is the strictly decreasing ordering 2,1,0, which occurs 440 times. The ordering

of 1,2,0 (corresponding to our hypothesis that the morning would have the highest impact

estimates and the middle of the day the least) is the next most common, occurring 92 times.

We probably shouldn’t read too much into any of these numbers, as this is kind of crude

and ad-hoc way to gain some holistic understanding of our empirical results for ∆. In

particular, we have not weighted the relative importance here for each fixing of variables by

how commonly those fixed values occur, so we are getting more an overview of the landscape

of possible behaviors, rather than a clear picture of likely behavior. There are lots of other

computations we can and should do here, but as a basic sanity check to see if our empirical

results seem reasonable, we feel this passes for now.

The time-of-day feature results in particular suggest some promising avenues for further

investigation. It would be interesting to try to understand more systemically under what

conditions we expect impact to be lesser in the late day vs. mid-day time periods and why.

For now though, we are satisfied that the cost function in (1) provides a reasonable

(though still very noisy!) proxy for comparing the expected impact costs of different possible

schedules, and so we can use this as the basis for the design of a scheduler that tries to

minimize our expected impact costs. In the next section, we’ll detail our scheduler design.

7 A Scheduler Using Dynamic Programming

As a component of our algo logic, a scheduler should be designed to give sensible answers to

any question of the form, “how many shares of this order should we trade over the next X

minutes?” We are going to design here a scheduler for intra-day trading, and leave allocations

to auctions as a separate task. In our implementation of this algo, the amount allocated to

45

opening and closing auctions is chosen proportionately to the historical volume curve, and

the remaining volume is allocated via the intra-day scheduler we are discussing here.

We should not assume ahead of time that our intra-day scheduler will be invoked only

at particular times or for particular values of X. In fact, our algo tactics involve a fair

amount of randomization, with the result being that there is no dependable structure to the

scheduling questions the scheduler is asked to solve. As we have seen, however, data science

in highly noisy data sets is precarious, and we would probably not want to build multiple

models or modeling frameworks for a wide variety of similar time scales. Instead, we want

to reasonably adapt the outputs of the models we have built at the timescale of 10-minute

intervals to provide answers for any reasonable scheduling problem, even if it does not cover

the full trading day and does not align with 10-minute boundaries, etc.

When asked to determine how much to schedule for the next time interval, our new

scheduler will consider several parameters. The most notable are: the current time, the

order expiration time, how many shares are left to trade, and the endpoint of this newly

beginning time interval that we are being asked to schedule for. When the remaining time

to order expiration is less than ten minutes, we’ll default to a VWAP schedule, since this is a

shorter total time horizon than what our price impact research is really designed to inform.

When the total time remaining for the order is greater than ten minutes, we’ll first compute

how many consecutive ten minute intervals would fit approximately into the remaining time.

Let’s call that number N . We’ll also compute how many round lots are remaining to be

traded, and we’ll call that number R.

N is the number of
consecutive 10min
intervals that fit into
the remaining time for
the order

R is the number of
remaining round lots
to be traded

how to schedule R lots over N
ten-minute time intervals

time till order expiration

use VWAP
schedule

use Scheduler

10min interval

N > 1

eg. A

eg. B

N ≤ 1

Rr1 + + =r2 r3

Proxy Scheduling Problem

Now we can define a scheduling problem that is closely related to the task at hand,

though not exactly the same: what do we think is the best way to schedule the trading of

46

R lots over N ten-minute time intervals? We’ll call this our “proxy scheduling problem.”

Skipping ahead for a moment, suppose we had an answer to this proxy scheduling problem

in the form: “first trade r1 round lots in the first interval, then r2 round lots in the second

interval, . . . , and finally trade rN rounds lots in the last interval,” where r1 + · · ·+ rN = R.

With this kind of solution in hand, we could reasonably answer scheduling questions about

time intervals that didn’t match up perfectly with our ten-minute intervals by pro-rating

our ri quantities for any partial intervals. For example, if asked how much we would suggest

trading over the next five minutes, we would say 0.5∗r1. If asked how much we would suggest

trading over the next twenty-three minutes, we would say r1 + r2 + 0.3 ∗ r3. [Technical note:

we probably want to round these answers back to an integer number of round lots in most

cases.]

But how do we handle the further discrepancies between this clean “R lots in N 10-

minute intervals” proxy scheduling problem and our messier real scheduling problem? The

number of shares remaining might not be an exact multiple of round lots, and the current

time and order expiration times might not line up with 10-minute boundaries. To deal with

such issues, we’ll think in ratios that can be translated between the real problem and the

proxy problem. More precisely, we’ll compute: in the real scheduling problem, the current

interval to be scheduled represents X of the remaining time until order expiry, where X is a

number between 0 and 1. We can then apply this X to determine how we want to pro-rate

the r’s we obtain as the solution to our proxy scheduling problem. For example, if X is 0.14,

then we want to take the sum of the (pro-rated) r’s over the first 0.14 ∗ N intervals. Let’s

call that resulting sum S. Now S represents a fraction Y := S/R of the remaining volume

in the proxy scheduling problem. We can then take Y and apply it to our real scheduling

problem: we’ll multiply Y by the remaining shares left to be traded to determine an answer

to our real scheduling query. [Technical note: our algo in production will typically round

this answer to an integer number of round lots, and also will apply some randomization that

may make the final amount scheduled a bit smaller or larger than this initially computed

answer.]

47

number of consecutive
10min intervals that fit
into the remaining time
for the order

pr
ox

y
sc

he
du

lin
g

round lots to be traded in
remaining interval (prorate
partial intervals)

order
received

order
expires

current interval as X
of the remaining time
til order expiry

take the sum of prorated r’s
over the first X × N
intervals

fractional round lots to trade
in current interval based on
proxy scheduling

current interval

current
interval

N = 3

R

X

S

0.2

r1

r1 prorated

+ + =r2 r3

i17i16i15i14

From Proxy
Scheduling to
Real Scheduling

By this point, you may rightly be wondering: why have we worked so hard to define

and translate back and forth to this proxy scheduling problem? It’s really the same kind of

problem we started with, so this doesn’t feel like forward progress. But as it turns out, the

proxy problem is very conveniently designed to be solved with dynamic programming.

Let’s consider what all of our work in the previous sections of this paper has yielded: a way

to compute a cost function for trading a sequence of proscribed amounts (e.g. r1, . . . , rN)

over 10-minute intervals, as long as those amounts stay within specified caps. As we’ve

discussed already above, however, we can’t afford the time and computational resources it

takes to compute the expected cost estimates directly for all of the reasonable schedules we

might consider, so this is where dynamic programming techniques comes in handy.

Our task is to find the schedule with the lowest cost estimate among the set of possibilities

under consideration for our proxy scheduling problem. We’ll do this by considering the 10-

minute intervals one at a time, working backwards from the end. For ease of description

here, we’re going to temporarily ignore some nuances, and in a bit we’ll discuss how to work

them back in. In particular, we’re going to ignore that our cost estimates can depend upon

our time of day feature.

First we’ll notice that we can extend the definition of our cost function C from (1) to

48

arbitrary suffixes of volume sequences:

C(vk−1, . . . , vN) :=
N∑
i=k

vie
σ
∑

k≤j≤i ∆(vk−1,vk).

This extended definition computes a value that is proportional to our cost estimate for the

last k intervals, though it also must include vk−1 in the input to determine the first ∆ term.

We say the value is proportional because we have omitted the factor of eσ
∑

j<k ∆(vk−1,k) that

gets multiplied by this in our cost function when we consider the full sequence v1, . . . , vN .

We define v0 := 0 for notational consistency.

Our extended cost function definition satisfies a recursive property:

C(vk−1, . . . , vN) = eσ∆(vk−1,vk) (vk + C(vk, . . . , vN)) .

We can also define an “optimal” cost function C∗ that takes vk−1, V , N , and k as input:

C∗(vk−1, V,N, k) := min vk,...,vN s.t.
vk+···+vN=V

{C(vk−1, . . . , vN)}.

Here, the minimum of C is taken over all valid volume sequences vk, . . . , vN that add up to

the specified total amount V .

This minimized cost function C∗ also satisfies a recursive property:

C∗(vk−1, V,N, k) = minvke
σ∆(vk−1,vk) (vk + C∗(vk, V − vk, N, k + 1)) (2)

Here, the minimum of C∗ is taken over valid values of vk, which must be non-negative and

≤ V . We may impose a tighter, absolute cap on individual vi values as well.

Now we can consider our proxy scheduling problem backwards, starting with possibilities

for the last interval and iteratively extending our view. As we go, we’ll want to keep track of

what we’ve learned about the possible paths ahead of us. We’ll suggestively conflate notation

here and treat C∗ as a data structure whose entries are indexed by values of vk−1, V , N , and

k. [Technical note: we can treat the parameter N as a constant throughout, so actually our

data structure has a 3-dimensional index. But we’ll keep writing N because as a parameter

here because we feel it is clearer for exposition.] We initialize our data structure with values

of +∞, meaning that cost estimates are thought of infinite until proven otherwise.

When k = N , there is only one way to choose a vk = vN such that
∑

N≤j≤N vj = V :

namely, we must set vN = V . Thus, for every V that we view as a valid amount to schedule

in the final interval and every valid possible value of vk−1, we can overwrite the +∞ cost

entry for C∗(vk−1, V,N,N) with:

C∗(vk−1, V,N,N) = eσ∆(vk−1,V) ∗ V.

There is something important to note about the structure of equation (2). All of the

referenced values of C∗ on the right hand side of the equation are for a strictly higher value

49

of the last parameter, k → k + 1. Thus, if we assume we have already computed all of the

values of C∗ for valid combinations of vk and V with our same fixed value of N and for

some value k + 1, then we can compute all of the relevant values for k from these, using

the specification in equation (2). We simply cycle through all of the possible values for vk,

and take the minimum value of eσ∆(vk−1,vk) (vk + C∗(vk, V − vk, N, k + 1)) that we find, and

we store this in our data structure as the value of C∗(vk−1, V,N, k). Having set all of the

entries for k = N correctly, we can thus work backwards, next setting all of the entries for

k = N − 1, and then all of the entries for k = N − 2, and so on.

This is the general form of dynamic programming: we take a parameterized problem we

want to solve, we find a recursive relationship between it and its natural subproblems, and we

identify an order for solving the subproblems such that each time we solve a new problem, we

can use the recursive relationship and it only references subproblems we’ve already covered.

The remaining question is: how much is this all going to cost us in terms of computational

time and memory? For this, we need to quantify how many valid values of vk−1 and V we

may need to consider. To control these, we can place a cap on how much volume can be

scheduled in any single interval, and we can also discretize our choices for vk’s to whatever

level of coarseness we wish. Let’s let A denote the number of discrete values for vk−1 that we

consider valid for a particular interval. (For simplicity for now, we’ll assume this number is

the same for every interval, but that isn’t a requirement in general.) The number of values

of V that can be achieved is then ≤ N ∗A, and the values of k range from 1 to N . Thus, an

upper bound on the number of values for C∗ that we will need to store is: A2 ∗N2.

Each evaluation of equation (2) involves finding the minimum among ≤ A pre-computed

values, so our total computation time can be upper bounded as: O(A3N2). By controlling

how many choices we consider for the scheduling in each individual interval (i.e. the value

of A), we can control this value of A3N2 and keep it in a range that is reasonable for our

algorithm to compute in real-time when faced with a scheduling problem.

One fun aside before we leave the topic of dynamic programming: if you’re thinking that

the term “dynamic programming” seems engineered to sound vaguely impressive while not

conveying much, you’re right! It was coined by Richard Bellman in the 1940s for essentially

that purpose. As Bellman writes in “Eye of the Hurricane: An Autobiography” (1984, p.

159):

“I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for

multistage decision processes. An interesting question is, “Where did the name, dynamic

programming, come from?” The 1950s were not good years for mathematical research. We

had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense,

and he actually had a pathological fear and hatred of the word “research.” I’m not using

the term lightly; I’m using it precisely. His face would suffuse, he would turn red, and he

would get violent if people used the term research in his presence. You can imagine how

he felt, then, about the term mathematical. The RAND Corporation was employed by

50

the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had

to do something to shield Wilson and the Air Force from the fact that I was really doing

mathematics inside the RAND Corporation. What title, what name, could I choose? In the

first place I was interested in planning, in decision making, in thinking. But planning, is not a

good word for various reasons. I decided therefore to use the word “programming.” I wanted

to get across the idea that this was dynamic, this was multistage, this was time-varying. I

thought, let’s kill two birds with one stone. Let’s take a word that has an absolutely precise

meaning, namely dynamic, in the classical physical sense. It also has a very interesting

property as an adjective, and that is it’s impossible to use the word dynamic in a pejorative

sense. Try thinking of some combination that will possibly give it a pejorative meaning. It’s

impossible. Thus, I thought dynamic programming was a good name. It was something not

even a Congressman could object to. So I used it as an umbrella for my activities.”

7.1 A Few Illustrative Examples

Now that we’ve gone through all the work to set ourselves up to compute schedules that

minimize our estimates of impact cost (subject to trading the right amount of volume), we

may ask: what will these schedules look like? Will all this work lead to trivial answers that

just spread the volume out evenly or just concentrate it as heavily as possible? The answer,

it turns out, depends heavily on the nature of the function ∆(vi, vi−1).

To gain some intuition about how the ∆ function drives the scheduling behavior, we

can consider some toy examples. For this we’ll substitute very simple functions for ∆ and

then further simplify with heuristic estimates of equation (1) that allow us to solve for

an “optimal” schedule directly. These examples should not be expected to represent the

real behavior of our algorithm in practice, as all of these simplifications are unrealistic

and chosen for convenience rather than faithfulness to real data. However, they help us

gain an understanding for the possible range of scheduling behaviors that our framework is

capable of introducing, as well as understanding of how properties of ∆ functions can drive

corresponding behaviors in the resulting schedules.

We’ll start with a toy example that exhibits no dependence on vi−1 (for one thing, this

means no reversion). We define:

∆(vi, vi−1) := αvi,

for some positive constant α. In this case, we can rewrite equation (1) as:

C(v1, . . . , vN) =
∑
i

vie
σ
∑

j≤i E[∆̃i] =
∑
i

vie
σ
∑

j≤i αvj .

By redefining α, we can absorb σ and write this as:∑
i

vie
α
∑

j≤i vj .

51

Next, we’ll make a simplifying approximation by replacing ex with 1 + x, the beginning

of its Taylor series expansion at x = 0. This gives us:

∑
i

vi(1 + α
∑
j≤i

vj) =

(∑
i

vi

)
+ α

∑
i,j
j≤i

vivj

 .

This first term,
∑

i vi, is just the total volume to trade. Since we are treating that as a fixed

constant V , we can ignore that terms for the purposes of minimization. Thus, our goal is to

minimize

α

∑
i,j
j≤i

vivj

 ,

subject to the constraints each of our N variables vi must satisfy 0 ≤ vi ≤ V and
∑

i vi = V .

This is an example of what is known as a “quadratic programming problem.” There

is a fair amount of optimization theory devoted to the solving of quadratic programming

problems: the general case is doable, well-studied, and somewhat complicated. It so happens

that this particular example has a straightforward solution.

We can decompose this value
∑

i,j
j≤i

vivj into a sum of diagonal terms,
∑

i v
2
i , and a sum

of terms below the diagonal,
∑

i,j
j<i

vivj. This is probably clearest if we visualize things

geometrically. The quantity v2
i , for instance, has a geometric meaning as the area of square

with side-length vi. And each quantity vivj has a geometric meaning as the area of a rectangle

with length vi and height vj. If we draw a 2-dimensional grid, we can think of all these shapes

as living inside the square with corners (0, 0), (0, V), (V, 0), (V, V). Each axis from 0 to V

can be divided into consecutive regions of length v1, v2, . . . , vN , and then all of the points

(x, y) where x falls inside the vi region and y falls inside the vj region for a rectangle with

area vivj. The squares corresponding to the v2
i values envelop the diagonal line that connects

(0, 0) to (V, V):

52

minimize total area of the
diagonal squares plus the
region below the diagonal.

area =

fixed
point

v12 + v22 + ...+ vn-12

+ (V - v1 - ... - vn-1)2

v1

v1
v2

v2

v3

v3

v4

v4

v5 V

V

0

v5

v1v5

v2v5

v1v4

v2v4

v3v5

v4v5

v3v4

v1v3

v2v3

v1v2

Assuming α > 0, we want to choose the values of v1, . . . , vN in such a way that minimizes

the total area of the diagonal squares plus the region below the diagonal. The region below

the diagonal gets fully covered regardless, so this boils down to minimizing the over-diagonal

contributions of the squares that sit along the diagonal.

Let’s think about the nature of these squares. If you look at the possible square sizes

as nested layers, it’s easy to see that each successively bigger square adds more area than

the previous increment. This means, for instance, that two squares of side-length two will

combine to a smaller amount of total area than a square of side-length one and a square of

side-length three. To see this, we can imagine starting with the two squares of side length

two, and imagining that one sheds a layer and gives it to the other. The shedded layer (the

increment from a square of side-length one to a square of side-length two) has area = 3. But

the added layer (the increment from a side-length two to a square of side-length three) has

area = 5.

53

two squares of side-length two will combine
to a smaller amount of total area than that
two squares of side-length one and three.

total area total area

each successfuly bigger
square adds more area
than the previous
increment

1
1 2

3
4
5

1 2 3 5
4

6
7

321 6
7
8
9

4 5321

1 + 9 = 10 4 + 4 = 8

Fixing the sum of v1, . . . , vN means we are fixing the sum of the side-lengths of all of the

squares. This is like a fixed number of layers overall. If we were to start with some arbitrary

values for v1, . . . , vN , we know that taking layers from larger vi’s and giving them to smaller

vi’s instead will reduce the total area. This means that the minimal solution will have vi
values that are as equal as possible. Thus, this toy example leads to a TWAP-like schedule,

where we would schedule roughly equal amounts of volume for each time interval.

Next let’s consider a toy example that exhibits only dependence on vi−1 (this represents

a delayed reaction). We define:

∆(vi, vi−1) := αvi−1,

for some positive constant α. In this case, we can rewrite equation (1) as:

C(v1, . . . , vN) =
∑
i

vie
σ
∑

j≤i E[∆̃i] =
∑
i

vie
σ
∑

j<i αvj .

We will again simplify using the approximation ex ≈ 1 + x for small values of x and

absorb σ and α into a single constant:

α
∑
i

vi(1 +
∑
j<i

vj).

The relevant term to minimize here is
∑

i,j
j<i

vivj. This should be familar now as the area

of the under-diagonal rectangles we illustrated in the example above. This time though,

because we looking at a delayed reaction case, there are no diagonal terms included. As a

result, we should look to maximize the total area of the missing diagonal terms, in order to

take a bigger bite out of the under-diagonal space we are trying to minimize. This should

lead us to concentrate the volume as much as possible, making some vi as large as we can and

then putting as much as the remaining flow as we can into another vj and so on. This kind

of schedule will be the opposite of a TWAP and will try to trade as chunk-ily as possible. We

note that for this particular toy version of the optimization problem, it doesn’t ultimately

54

matter what order the vi values go in. This is easy to see from the geometric view - if we

reorder the square sizes along the diagonal, the total area that gets “cut out” from under

the diagonal by their shapes doesn’t change.

We can generalize these two toy cases to a form of:

∆(vi, vi−1) := αvi + βvi−1

for some constants α and β. Applying the same approximation heuristics we used above,

we would get a simplified optimization problem requiring us to minimize something of the

form:

a

(∑
i

v2
i

)
+ b

∑
i,j
j<i

 ,

where a and b are constants. If b ≤ a, it is clear that the minimum is achieved by minimizing

the area of the diagonal squares, and hence we will want to spread volume out as evenly as

possible. If we fix some value of a and then begin increasing b, at some point where b > a,

there will start to be an incentive to carve out more of the under diagonal space with the now

cheaper diagonal squares, eventually leading to volume that is as concentrated as possible.

All of this is just a small taste of the kinds of optimization problems that can arise as the

details of the ∆ function vary, and as the form of our cost function C or our approximation

of it vary. Terms like v2
i may act to push the optimal answer towards evenly spread volume,

while terms like vivj for j 6= i may act to push the optimal answer towards concentrated

volume. Other kinds of terms may push the optimal answer towards spurts of concentrated

volume followed by cooling off periods. For example, imagine we are trying to minimize an

expression like: ∑
i,j
j≤i

vivjvj−1. (3)

This could arise as part of our cost expression if we had something like ∆(vi, vi−1) := αvi +

βvi−1 + γvivi−1. The vjvj−1 multiplication in expression (3) ensures that the contribution

from this term will be 0 if we can allocate volume only in every other interval.

Overall, the schedule that minimizes our expected costs while respecting all of our con-

straints arises from a tug-of-war between the component pieces of our cost function. Any

functional forms we could choose to impose (like fitting ∆(vi, vi−1) as linear, for example)

will have a strong or even determining influence on the outcome. For now, we try to avoid

assuming a specific form for ∆ and instead rely upon our empirical estimation of ∆(vi, vi−1)

for relevant values of vi and vi−1. Finding a “good” functional form for ∆ is a compelling

goal for our future research, as that would allow us to try to solve the resulting optimization

problem more directly, perhaps leading to a simpler and/or faster solution method com-

pared to dynamic programming. It could also give us more insight into market dynamics,

and inspire a better form for our cost function or other aspects of this framework.

55

8 Summary

In this work, we have detailed the research underpinning the design of the scheduler for our

newest algo, a scheduler which is intended to minimize impact conditioned on completing

the volume it is assigned within the allotted time. This is just one piece of our new algo,

which also includes a liquidity seeking component that we will discuss elsewhere.

At this point, the features we use for our modeling as well as the models themselves

are fairly basic, as fitting complex models to extremely noisy data is very fraught, and we

preferred to start with something more basic and hopefully more robust. We intend to iterate

quickly and frequently on this research and all other aspect of our design, as we study our

algos behaviors in practice and do more research on historical market data sets. We will

continue to release new findings as they develop.

9 Acknowledgements

We would like to thank everyone who consulted with us on earlier versions of this work and

this draft. We would especially like to thank our former quantitative researcher Matthew

Schoenbauer, who contributed to this project in its earlier stages.

A Some Dirty Laundry

The precursor to this research began in the fall of 2019, when we designed a pretrade impact

model. That work involved early analogs of the work we’ve done here in sections 4 and 6.

We’ve been working on these topics steadily ever since. The path we took to get to our

current state of understanding was a winding one, littered with software bugs, sub-optimal

decision making, and dead ends. We expect the path forward from here will be similar, and

some day in the not-to-distant future we will likely look back upon this checkpoint of our

work as embarrassingly primitive. Such is the nature of research, if we are lucky.

Feature selection in particular has been a bumpy road. Some seemingly natural ideas

we tested for feature selection did not pan out, and we’ll share one of those here as an

illustrative example. Intuitively, we expected that if we fixed an amount of volume that we

intended to trade in a given interval, the impact of that fixed amount would be smaller in

times of heavier overall market volume. This is like expecting the sound of penny dropping

to garner more reaction in a quiet room than in a loud room. If we could reliably detect and

measure such an effect, we could incorporate volume curves or real-time volume information

or similar into our modeling process to account for it.

There are many ways to go about looking for such an effect, and we tried a few of them

so far, to no avail. One of our first ideas was to include a feature computed by taking the

total volume in the previous 10-minute interval and dividing by the symbol ADV. It was our

56

Figure 1: Our first previous volume feature attempt: Not a success

intuition that a high amount of activity in the previous interval would allow our activity to

have less of an effect on price in the current interval.

Our first attempt to see if this feature might meaningfully help was to look at plots of

how average price movement varied as a function of this feature, while holding constant

the amounts of volume that we intended to add to the current and previous intervals. In

other words, we did something similar to what we did in section 6 above to get a look

at ∆(vi, vi−1): we matched up pairs of adjacent intervals that differed by the amounts of

volume we proposed to add, and compared their price outcomes. We then grouped these

pairs of observations according to the volume traded in the previous interval, to see how the

difference in price outcomes for the fixed volume shifts behaved as a function of that feature.

The plots here give a representative sample of the types of plots we saw, using January

2019 data.

We would have hoped to see a firm relationship here between the x and y axes, like y

values mostly decreasing as x values increased. That is clearly not what we’re seeing here,

which mostly seems to be flat or noise, and is not consistent between the training and the

testing data sets.

We tried several similar tests for other feature possibilities, with similarly unencouraging

results. This and many others of these tests were performed when our data normalization

procedures were a little less developed, so we will likely revisit them in the future as our

abilities to combat noise improve. For now, this failed line of research prompted us to define

other possible features more simply/coarsely to make them more robust and try to avoid

their effects being drowned out by noise. In particular, our time of day feature which only

has three possible values is a blunter way of trying to capture the same kind of phenomenon,

as overall trading volumes heavily correlate with time of day in this fashion. [Final aside: If

you’ve made it this far into the paper, my condolences. Now please go outside and get some

sunshine.]

57

