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1 Introduction

Pretrade analysis addresses the following scenario: we are considering trading a large amount
of stock, and we want to predict what might happen if try to trade it over various timescales.
What will happen if we try to complete the order within an hour? Within a day? Within 3
days? How much more should we expect to pay in total implicit and explicit costs if proceed
very aggressively versus very passively? Trying to formulate answers to these questions before
we start trading is typically called “pretrade analysis.” Pretrade analysis is a challenging task
because trading takes place in a complex interactive system. Since actions feed off each other
as well as constantly shifting external conditions, it is impossible to assert with any certainty
how the market will react to trading that has not yet occurred. Nonetheless, there is some
method behind the madness. Underneath the chaotic veneer of the US equities market, there
are intentional mechanisms at play, and these mechanisms can result in noticeable patterns.
We will try to build a model of these patterns, informed by historical data. We will use this
model to make predictions about what outcomes we might obtain when we take various trading
actions.

At every step of our model design, we will maintain a brazen confidence that outcomes
can be meaningfully predicted, as we could be paralyzed otherwise. But each time we take a
step, we will look nervously behind us, concerned that we may have fallen off the meaningful
path and desperate for signs of reassurance. This is how we will (hopefully) maintain the right
balance of forward momentum and humble introspection that can lead us to meaningful model.
It is a favorite saying in statistics that “all models are wrong, but some are useful” (attributed
to George Box). This is profoundly true. And the path to a wrong but useful model is best
pursued by those who hold both the wrongness and the usefulness close to the chest at all times.

2 Overview

The research we present here culminates in a model for how the distribution of likely prices
changes as a function of how much directional volume we might insert into the market over a
specified time scale. That’s a mouthful, so let’s break it down piece by piece.

At any given moment in time, we tend to think of the price of a particular stock as a
number. Like “$50 per share.” But that’s too simplistic. Market participants consider multiple
kinds of price information for a single stock at a given time. There are various quoted prices
for buying/selling various amounts: e.g. “100 shares available that you can buy for $50.01 per
share”, “looking to buy 200 shares and willing to pay $49.99 per share,” etc. And there are also
recently completed transactions: “100 shares sold for $50.00 a share.” Quotes and trades are
continuously updated as activity happens across the fragmented market. For simplicity, we’ll
focus on the prices of completed trades (often referred to as “Last Sale” prices). In a given
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stock, the time series of transactions as they are reported form an ordered sequence of trade
prices. At a given moment, we can define the “last sale price” as the price per share that was
paid in the most recently reported transaction. This price is a single number at any particular
moment in the past, but more generally can be viewed as a function of time.

Now, if we are looking ahead to a particular moment in the future, the most recent transac-
tion price at the moment will also be a number, but it’s a number we can’t know yet. We can
accommodate some of our uncertainty about the future by thinking of this future price not as a
single number, but as a probability distribution. This should be a familiar mind set to anyone
who plays games with cards or dice. Once a die is cast, the outcome is a single number between
1 and 6, but before the die is cast, we can think of the future value as having a 1

6 chance of
being a 1, a 1

6 chance of being a 2, etc. This collection of probabilities (the amount of chance
associated with each possible outcome) is called a probability distribution. This is a useful tool
for reasoning about future events that have an element of randomness to them. A probability
distribution can reflect whatever information we know so far. For example, if we are playing
a game of poker, and some number of cards have already been revealed, we will know some
cards are no longer in the deck, so we will treat them as having a 0 chance of being the next
dealt card. Poker is an interesting example, as once the deck has been shuffled, the next card
that will be dealt is already determined. There is no actual randomness left in the outcome!
Nonetheless, we as the players do not yet know the outcome, so our imperfect knowledge can
still be meaningfully described by a probability distribution.

As market participants, it makes sense for us to think of future prices as probability distri-
butions. We will try to incorporate all of the knowledge we have into these distributions, but we
cannot expect to have certainty about the future prices. This does have a consequence that is
somewhat confusing: when we talk about past prices, we are talking about numbers. Familiar,
comforting numbers of dollars and cents that are easy to wrap our heads around. But when
we talk about future prices, we are talking about probability distributions on numbers. These
distributions can be talked about with statements like “there is a 20% chance that the price will
rise by at least 20 cents between now and the end of the day” or “there is a 75% chance that the
price one hour from now will stay within 10 cents of the current price...” These kinds of state-
ments are already highly technical, but even they leave out some very important caveats. With
dice and cards, it’s clear where the underlying notion of “chance” comes from: it comes from
the physical process of rolling the die or shuffling the cards. By making reasonable assumptions
about these physical processes (specifically that each outcome of the die is equally likely or
that shuffling is a truly random permutation of the cards), we can derive precise and defensible
probabilities for each outcome, conditioned on whatever partial information we may have. With
markets, the sources of “randomness” are much more opaque. As a result, many economists and
analysts pretend that market outcomes are driven by invisible random processes that have very
familiar and convenient structures: e.g. Gaussian processes, which distribute outcomes along
classic bell-shaped curves. When such analysts say there is a particular “chance” of some event
happening, they are implicitly saying: “assuming the market behaves like a Gaussian process
with mean X and variance Y , the chance of ...”. Leaving off that technical preamble produces
a much catchier sound bite, but the result is often misleading.

Naturally, people don’t just pick their assumed structures wholly out of thin air. They
might assume a Gaussian process, but then find the values for the mean X and variance Y that
are most consistent with past market data. We will try to assume as little as possible at first,
and use data collection to build up a picture of the typical distribution of future prices under
various circumstances. It is fairly straightforward to build our understanding of what “typical”
market behavior is. We can take all of the prices we have observed over the recent past in our
historical data set and use this empirical data to fill out a distribution. For example, if we want
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to know how often the last sale price increases by roughly 1% from the beginning to the end
of a trading day, we could simply look at all of our observations, count how many times this
happens, and divide by the total number of observations. This is probably a bit too simplistic:
we can further refine things by dividing our observations into groups of similar stocks, and
we may want to weight things by notional value instead of counting all observations equally.
But the general principle is the same: we can suppose that what we see in the data represents
“typical” behavior, and hence we can extract a reasonable model of typical behavior from our
data.

It gets much trickier when we want to understand what a typical response to our trading
behavior might be. Our historical transaction data specifies times, sizes, and prices of trades,
but it does not identify market participants. A priori, we don’t know when the trades we’re
looking at in the data set represent the actions of a large buyer or a large seller. Naturally,
once we start live trading, we will know our own trades and we can try to look at metrics that
capture market behavior in response to our trades and compare them to those metrics computed
in other times, but this is kind of research is severely hindered by the small sample size of our
own trades. And so we want to get what we can out of studying the vastly larger data set of
historical prices across the market.

To address this challenge, we’ll pair up historical samples of trading activity that seem
to differ approximately by the kind of activity we are contemplating. We’ll use these paired
samples to build a distribution of what we expect to happen to prices when we perform a large
trade. This immediately raises some questions: 1. how do we identify activity like “buying a
large amount of stock over the course of a day” when individual trade data reports don’t tell
us the side of the trade? (i.e. whether the buyer or seller expressed more urgency). And 2.
how do we combine these pairs of samples into a model of the distribution of price changes that
might result from our trading? We will discuss these questions and several possible answers in
detail below. For now, it suffices to think of each pair of samples as a (noisy) window into what
might have been. Our hope is that collecting enough noisy data points yields an averaged view
that is meaningful.

Ultimately, we’ll arrive at a tool that allows us to ask questions of the form: if I were to
buy X shares of symbol S over the course of one day, what’s the probability distribution that
expresses how the price of S might move as a result? Once we have a model that generates these
probability distributions, we can extract information like the median expected price movement
or the 25th percentile of expected price movements, etc. [Aside: it is common elsewhere for
the mean and variance of distributions to be extracted and used to make decisions. In fact,
we began by considering means/expectations in this work. We ultimately gravitated towards
medians and percentiles instead, as means and variances can be heavily affected by outliers,
while medians/percentiles are more robust.]

The rest of this paper chronicles the research that led to our model and accompanying
pretrade analysis tool (http://pretrade.prooftrading.com) in its current form. We choose to
explain our research process completely and chronologically from the beginning, so that we can
explain why we took each step we took in proper context. This means many of the things we
describe early on end up being changed by the time we arrive at the final model. It also means
that this paper is much longer and much more winding than a direct, top-down description
of our final model. For readers who only want to see a more concise explanation of our final
model, you can find such an explanation in Proof’s blog on medium (the relevant post is titled
“To Serve Traders”).
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3 Getting down to details: defining units and market conditions

We’ll start our research process by breaking the trading day into disjoint windows of time, and
then we will summarize the trading activity and price change for each symbol in each window.
The initial idea is to study how price distributions change as a function of trading activity. This
can be a first step to understand how our impact on trading activity may translate to impact
on price.

We’ll start with each window being 10 minutes long, though we’ll consider other window
lengths later.

How we choose to summarize market activity in each time window is very important and
will effect everything going forward. This is a key moment that we will revisit again and again
to mine for future improvements to our model, but for now, we have to start somewhere. Once
we fix a method of measuring and summarizing, we’ll refer to the outputs of this process as
market profiles. Along the way, we’ll try to enumerate features of “good” market profiles that
we can test for, and use these to see if we are following a reasonable path.

To construct our initial profiles on a per symbol basis, we’ll take each trade and label it as
below the prevailing midpoint price, on the midpoint price, or above the midpoint price. The
intuition for this is that trades at prices below the prevailing midpoint signal that the seller was
more urgent, and may exert more of a downward pressure on prices than trades at or above the
midpoint. Conversely, trades at prices above the prevailing midpoint signal that the buyer was
more urgent, and may exert a more upward pressure on prices. Once the trades are labelled
in this way, we can sum up the volume in our time interval in each category. We’ll call the
sum of volume below the midpoint DOWNv, the sum of volume at the midpoint NEUTRALv,
and the sum of volume above the midpoint UPv. (Note: this trade labeling method will be
reconsidered and replaced later on.)

In these absolute terms, it is hard to meaningfully compare these volume numbers across
symbols. What might be abnormally low amounts of trading in one symbol may be abnormally
high in another. One way of dealing with this is to split all analyses by symbol, so that a
time period of activity in one symbol is only ever compared to other time periods of activity in
that same symbol. But this is a dramatic loss in sample size, as there are many thousands of
symbols. So what we’ll do instead is divide each volume by the average daily volume in that
symbol to normalize it. [Note: we’ll use a 20-day rolling average. More specifically, we look
back 20 calendar days, and discard any days with no trading (e.g. weekends) before taking an
average.]

After this normalization, our three numbers UPv, DOWNv, and NEUTRALv for each time
period are now percentages, and are typically less than 1 (though not always, as it is possible
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that a single 10 minute time period contains more volume than the average entire day). Since
there are 39 10-minute time windows each trading day from 9:30 am to 4:00 pm, we would
expect on average that our three numbers in each window will sum up to about 1

39 ≈ 0.0256,
though there will be lots of fluctuation.

In addition to these numbers intended to capture some basics of trading activity, we will
also calculate the relative price change experienced over each time interval. More precisely, we
will compute:

∆p :=
Lp − Fp

Fp
,

where Lp is the last trade price in the interval and Fp is the first trade price in the interval.
Any intervals that lack trading activity entirely are discarded from the analysis.

Naturally, we are interested in the relationship between our calculated triple (UPv, DOWNv,
NEUTRALv) and the ∆p values. This relationship is best modeled as probabilistic: each set
of fixed values for (UPv, DOWNv, NEUTRALv) induces a potentially different distribution on
the random variable ∆p. A priori, we don’t know what these distributions are, but we have a
collection of samples from them for various values of the market profiles, coming from historical
data.

If we treat our three market profile components as having arbitrary precision and suppose
that the distributions on ∆p can change arbitrarily with even tiny changes to our market profile
numbers, then we cannot hope to compute authoritative estimates of the ∆p distributions
from our data set. This is because we will have very few samples for each exact value of
(UPv, DOWNv, NEUTRALv) at high levels of precision. However, this is an overly pessimistic
view. It is reasonable to assume that small changes to these numbers yield only small changes
to the distribution of ∆p in return.

There are two common approaches we can take to leverage this assumption. One would be
to impose a limited form on the relationship between the market profile and ∆p distribution.
This is how techniques like regression work: we could for example, suppose that the expectation
of the ∆p distribution is a linear function of the market profile features, and find the best fitting
linear function for a training set pulled from our historical data. Linearity here is a strong
constraint though, so we’ll start with the other approach: discretizing the market profiles. If
we round each of the three numbers in our market profiles to a suitably coarse set of values
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that are qualitatively representative, we can group our observations by these rounded values
and build up sample size in each group. For a suitably large group of observations that have the
same (rounded) market profile, we don’t have to impose any particular form on the relationship
to a ∆p distribution, we can just empirically measure it. We can estimate its expectation, for
instance, by simply taking the average ∆p in our group of samples, or we can estimate the
probability it places on a given range of values by taking the proportion of our group of samples
that land in that range.

We will round our values for UPv, DOWNv, and NEUTRALv to the nearest multiple of
0.01. Recall this unit represents 1 percent of the prior day’s total volume. Since we expect the
“average” sum of these three numbers to be around 0.0256, it may often be the case that all
three numbers are rounded down to 0.0. This is fine, we just need to remind ourselves that
numbers of 0 don’t mean no volume, they just mean fairly low volume. In fact, about a third
of our total observations fall into this category (for data from all symbols over the first quarter
of 2019). This is probably much higher than we’d like and it would certainly be nice to increase
our precision, say by rounding to the nearest multiple of 0.005 or even 0.0002. Doing this
unilaterally would cause a proportionate reduction in sample size. We won’t do this for now,
as we’d prefer to start with a coarse model and make sure the sample size is sufficient to yield
meaningful results, and then go back and try to refine it. Another option is to use something
more like a logarithmic scale and increase the precision for very small numbers and decrease
the precision as the numbers get larger. This would express the intuition that the difference
between say 0.005 and 0.01 is more meaningful than the difference between 0.085 and 0.09. For
now, we’ll stick with the simplicity of 0.01 as a unit universally, but we’ll keep it closely in mind
that this is a highly problematic choice, and that what we’re doing so far is basically a proof of
concept only.

Next we have to decide what we want to measure about the (hopefully many) observations
of ∆p that we have for each rounded market profile. Initially, what we have is a collection of
hundreds or thousands of individual values for ∆p that come from hundreds or thousands of
times we have observed a particular market profile in our historical data set.
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We could collapse this collection of data to a single number by taking its raw average, which
would be our empirical estimate of the expected value for ∆p associated with this particular
market profile. But we may be ignoring a lot of useful information when we do this. For
example, here are two data series that have the same average value, but the blue series is far
more concentrated around its average than the orange series:

There are many interesting ways to summarize a distribution that fall in between the ex-
tremes of carrying around the full set of observations and collapsing it to a single average. One
common approach is to compute the variance or standard deviation of the distribution, and
add this to the average to paint a somewhat fuller picture. This approach conveys most of the
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relevant information in cases where the distribution is particularly well-behaved, meaning that
it is fairly bell-shaped (Gaussian). However, it is less informative in cases where the distribu-
tion has considerable outliers that exert a heavy pull on the average as well as variance. Note
the variance is itself an average (of the square of the deviation from the mean), and hence it
may also be heavily influenced by outliers. Here are two series that have the same mean and
variance, even though the blue series variance is mostly coming from a single outlier:

If we want to concisely capture what’s important about our ∆p samples and the underlying
distributions they represent, we have to ask: what do we most want to know about these
distributions, and what sorts of misbehavior might overly skew our answers? In terms of what
we want to know, one important thing is: how different are the ∆p distributions? In other words,
how much influence do market profiles have on the distributions of relative price fluctuations?
Fundamentally, this requires us to compare distributions. Given samples from two distributions,
we want to measure how similar the distributions might be.
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Comparing means and variances can get us started, but we should be wary that financial data
often has heavy tails, and outliers may therefore cause two sets of samples to look artificially
different when they are (mostly) similar. We could screen for this kind of effect by testing
how similar our distributions are to well-behaved Gaussian distributions, but then designing
the screening procedure presents the same problem! We’ve just moved the task of measuring
similarity of two arbitrary distributions to the task of measuring the similarity of one arbitrary
distribution and one Gaussian distribution.

Thus it seems helpful to use a more general way of measuring similarity of distributions,
and for this we will use a notion of statistical distance. There are many reasonable notions of
statistical distance, but we’ll stick with a pretty basic and intuitive one. To define our notion
of statistical distance, we’ll start with the toy case of distributions on just 5 possible values.
We can think of each value as a scale, and the probability of that value is represented by the
weight of objects we place on top of that scale.

The weight is measured in units that are normalized so that the total weight summed across
all 5 scales equals 1. Now, if we have two such distributions, we can define the statistical
distance between them as the sum of the absolute values of the differences in the weights on
each scale:

This variant of statistical distance is known as total variation distance. We’ll let SD(DA, DB)
denote this distance between distributions DA and DB. We can generalize this notion easily to
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distributions over any finite set of discrete values. To write this formally, we’ll let U denote our
finite universe of possible values, and for each value u ∈ U , we’ll let wA(u), wB(u) denote the
weights that distributions DA and DB place on value u respectively. Then:

SD(DA, DB) :=
∑
u∈U
|wA(u)− wB(u)|.

This represents twice the amount of weight we need to move in order to turn one distribution
into the other. This factor of 2 comes from the fact that moving weight from one scale onto
another affects the absolute value differences for both scales:

This intuitive physical meaning is one nice feature of using this statistical distance to com-
pare distributions. Another nice feature is relative robustness to outliers: small weights have
only a small effect on total variation distance, even if they are placed on extreme values. Another
nice feature is symmetry: SD(DA, DB) = SD(DB, DA), so it doesn’t matter which distribution
we call “DA” and which distribution we call “DB.” This is a typical property we require of
notions of “distance”: the distance between two objects should not depend on which one is con-
sidered the starting point. Similarly, we have SD(DA, DA) = 0, so the distance of a distribution
from itself is 0. Also we have the triangle inequality:

SD(DA, DC) ≤ SD(DA, DB) + SD(DB, DC).

This states that the distance between DA and DC is no greater than the sum of the distance
between DA and DB and the distance between DB and DC .

Of course, we do not know the “true” ∆p distributions for each market profile, we only have
our observed data. So to estimate things like total variation distance, we will need to estimate
the weights that our distributions place on various values. If we define our universe of values to
be our calculated values of

Lp−Fp

Fp
at a high level of precision, we’ll once again face the problem

of having insufficient sample size per value to get a reliable estimate of its weight. So we’ll need
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to group together ranges of values of
Lp−Fp

Fp
in order to get sufficient sample size to estimate the

probability mass that falls within each range.
But how should we choose our ranges? We don’t want to have too many, as this will again

lead to small sample sizes in each range. We probably also want to avoid choosing ranges so
that the weight tends to concentrate unevenly in them, as heavier ranges might indicate we are
grouping together values that we could afford to distinguish, and lighter ranges might suffer
inaccurate estimates. With this in mind, what we’ll do first is pick a number of ranges we’d like
to have, let’s say 21. Next we’ll look across a sizeable sample of our data set of ∆p calculations
and order it from most negative to most positive. We’ll find break points that divide it into 21
equal pieces (e.g. this would be dividing it into quartiles if we were doing 4 ranges instead of
21). These breakpoints will become the delineators of our ranges, with one small adjustment.
Since ∆p distributions are likely to exhibit a lot of symmetry around 0, we’ll make sure our
middlemost range is narrowly centered on 0, and we’ll have 10 ranges on either side of it. (This
is why we choose an odd number of ranges to begin with.) It’s helpful for us to avoid choices of
ranges like [−0.001, 0) and [0, 0.001), since putting all of the calculations that are rounded to
0 on the “positive” side will destroy expected symmetries between positive and negative price
movements.

Once we have defined these ranges, we will apply them to summarize ∆p distributions for
all market profiles, so that we can use these apples-to-apples range definitions to meaningfully
compare different ∆p distributions corresponding to different market profiles. So for each mar-
ket profile, we’ll take all our observed ∆p values, and we’ll count what proportion of them fall in
each one of our defined ranges. This gives us 21 numbers (adding up to 1) which summarize our
distribution, and enable us to compute the statistical distance between two such distributions
with respect to these fixed ranges. We’ll separately compute the average value of the observa-
tions for each ∆p distribution as well, since we may independently want this, and estimating it
from the data after we’ve rounded to ranges would introduce an unnecessary source of error.

Putting this all together, we’re ready to grab a bunch of historical data and compute sum-
maries of the ∆p distributions corresponding to rounded market profile values. What we’ll get
is a big table of numbers like these:

UPv DOWNv NEUTRALv E(∆p) P(∆p ∈ R1) P(∆p ∈ R2) . . . P(∆p ∈ R21)

0 0 0 −0.00001 0.03331 0.03722 . . . 0.03390

0 0 0.01 +0.00002 0.02046 0.03495 . . . 0.01964

0 0.01 0 −0.00085 0.02423 0.02617 . . . 0.05631

0.01 0 0 +0.00081 0.05257 0.06926 . . . 0.02216
...

...
...

...
...

... . . .
...

If you’re not familiar with the notation here, don’t worry - we’ll break it down for you. E
is math speak for “expectation,” so E(∆p) denotes the average value of the random variable
∆p. We’re using R1, . . . , R21 to denote our 21 ranges of values, and the notation P(∆p) ∈
Ri) denotes the probability that ∆p takes on a value inside the range Ri. (Of course, it’s
important to remember that our table contains empirically computed estimates, not ground
truth probabilities.) R1 contains the highest values of ∆p, and R21 contains the lowest values
of ∆p.

We are able to do this sufficiently quickly - we can assemble data from all symbols over the
span of 3 months at a time in about one hour. Hooray! But two major questions remain: 1)
how do we know these numbers are meaningful? and 2) what do we do with them? We’ll be
exploring these questions in the following sections.
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4 Sanity and robustness checks

Let’s start with the question of how we might assess the quality of the numbers we’ve computed.
There are multiple ways things could have gone wrong. Here’s just a small sample of them:
1. perhaps our estimates of the averages and probability masses in each range for many ∆p

distributions are wildly different from the true values. 2. perhaps the ∆p distributions don’t
vary much by the market profiles, and hence this data is not very interesting. 3. perhaps the
true ∆p distributions change on a timescale that is shorter than our 3 month training data set,
and hence this information will not replicate going forward.

There are some sanity checks we can perform to gain confidence that these kind of failures are
not destroying our results. The first check we will perform will test how stable these estimated
distributions are over time. For this, we’ll compare the results of estimating our ∆p distributions
from data for January through March of 2019 to the results of doing the same thing from data
for April through June of 2019. For each market profile that appears in both data sets, we can
compute the statistical distance between our two estimated distributions. We’ll average these
statistical distances over the market profiles, weighting each by its prevalence in our Jan-March
2019 data set. [Note that some market profiles may occur in one data set and not the other.
We have checked that these represent only a small amount of the total probability mass, and
thus we will ignore this minor issue.] We get an “average” statistical distance of approximately
0.06. This means, on average, about 3% of the probability mass moves around relative to our
fixed ∆p ranges when we use one data set versus the other. (Of course, for some market profiles
the difference will be less, and for some it will be greater.)

We can also ask: how does the relative prevalence of each market profile change from one
data set to the other? For this, we can compute the absolute value of the weight difference
for each market profile and sum up over all the market profiles. We get a number that is
approximately 0.04. Combined, these checks tell us something about the net effect of noise and
time-drift effects on our estimates. Overall, it’s an encouraging picture so far, as errors on these
orders are likely to be survivable and not destroy overall meaning if we are careful.

Next, we will check if our distributions (for Jan-March 2019) are roughly similar to each
other, or if they vary considerably as the market profiles vary. To do this, we’ll compute an
“average” distribution and then compute the statistical distance from each distribution to the
average. To average the distributions, we’ll individually average the probability mass placed in
each of our ranges, and we’ll weight according to the prevalence of each market profile. Once
we have the average distribution and the statistical distance from it for each distribution, we’ll
again average these statistical distances, weighted by profile prevalence, to get a single number
that represents how far our distributions typically are from the average. If all of our distributions
were the same, we would expect this value to be close to the 0.06 that may represent the level
of noise in our estimates. But instead, we get a much larger value: approximately 0.24. This is
all good evidence that our ∆p distributions do vary considerably by market profile, and they do
so in ways that are stable enough over months-long time periods to get reasonable estimates.

Another interesting check we can perform is a symmetry check: does the ∆p distribution
for a market profile like UPv = 0.06, DOWNv = 0.01, NEUTRALv = 0.02 behave similarly to
the ∆p distribution for the market profile UPv = 0.01, DOWNv = 0.06, NEUTRALv = 0.02,
but with the signs reversed? In other words, if we swap the UPv and DOWNv values in a
market profile, leaving NEUTRALv fixed, can we just swap the signs of ∆p distribution? This
is something we would expect to work, as it is intuitive to guess that downward pressure on
prices behaves the same as upward pressure, just with the sign of the price change reversed.
However, general market trends in our data set may perturb this, as there may be a default
tendency for prices to go up (or go down) over the time period of our data collection.
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To perform the symmetry check, we’ll match up all of the pairs of distributions with
UPv, DOWNv swapped, flip the sign of one of the ∆p distributions, and compute the sta-
tistical distance. Note that we choose our ranges for the ∆p values to be roughly symmetric
around 0, so this is easily approximated by swapping the weights of ranges 1 and 21, the weights
of ranges 2 and 20, etc. Here is an example where the first row is for UPv = 0, DOWNv = 0.02,
NEUTRALv = 0.01, and the second row is for UPv = 0.02, DOWNv = 0, NEUTRALv = 0.01:

E(∆p) R1 R2 R3 R4 . . . R11 . . . R18 R19 R20 R21

−0.0016 0.017 0.022 0.022 0.026 . . . 0.101 . . . 0.065 0.079 0.094 0.097

+0.0015 0.094 0.088 0.070 0.063 . . . 0.107 . . . 0.023 0.022 0.020 0.017

We’ve condensed our notation P(∆p ∈ Ri) to simply Ri here to save horizontal space in our
display.

Let’s see those Ri weights again with the bottom row flipped around the R11 range centered
on 0:

0.017 0.022 0.022 0.026 . . . 0.101 . . . 0.065 0.079 0.094 0.097

0.017 0.020 0.022 0.023 . . . 0.107 . . . 0.063 0.070 0.088 0.094

It’s not perfect of course, but we can certainly see the resemblance.
When we do this for all of our data and average the resulting statistical distances according

to market profile prevalence, we obtain a value that is approximately 0.05.
Putting all this together, we have good evidence that our estimated ∆p distributions are

roughly stable over months, roughly symmetric as we would expect, and display a meaningful
dependence on market profiles.

5 Prediction with a single time unit

Now we have gotten to a point where we have a reasonably effective grasp on how coarsely
rounded market profiles correspond to distributions of ∆p over 10 minute intervals. How might
we leverage this into a predictive model of what will happen if we try to trade a certain amount
of volume over a 10 minute interval? To make things concrete, let’s suppose that we intend to
buy an amount of MSFT stock over 10 minutes that corresponds to 2% of the average daily
volume. Let’s suppose for now that we will cross the spread to do so, which means we’ll be
adding +0.02 to the variable UPv.

Before we decide to take action, the market profile for any 10 minute period in MSFT can be
treated as a random variable, and we can get a sense of its distribution by looking at historical
data in MSFT and measuring the relative prevalence of various market profiles. This gives us
a weighting over market profiles that we associate with the symbol MSFT.
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For each market profile, we already have an estimated distribution of ∆p (computed across
all symbols to achieve sufficient sample size). Putting these things together, we have a weighting
of ∆p distributions that represents our default expectation for what should happen to ∆p for
MSFT over a 10 minute time interval.

We note that it could be valuable to do this computation separately for different times of
day: perhaps the typical market profile distribution for MSFT from 10:00 am to 10:10 am looks
different than the typical market profile distribution for MSFT from 3:00 pm to 3:10 pm. Trying
to account for this will naturally shard our data set into finer pieces, leaving less sample size
in each piece. One way to mitigate this is to try to identify times that are roughly similar to
each other, so that we can find a happy medium between treating all 10 minute intervals as
the same and treating all of them as completely different. The same approach could be applied
to sharding by symbol. This is a delicate issue we will come back to, but for now we’ll build
a baseline by throwing the 10-minute intervals of one symbol all together and computing one
single distribution of market profiles for each symbol, averaging evenly over time of day.

Our action of adding +0.02 to UPv an be viewed as a 1-1 mapping between market profiles.
A market profile of (UPv = 0.03, DOWNv = 0.02, NEUTRALv = 0.02) without our added
volume becomes a market profile of (UPv = 0.05, DOWNv = 0.02, NEUTRAL = 0.02) with
our added volume. We can take these new market profiles (with +0.02 added to the UPv) and
treat them as inheriting the weight of their pre-images under this mapping. In other words,
we assume that with our activity accounted for, the market profile of (UPv = 0.05, DOWNv =
0.02, NEUTRAL = 0.02) now occurs with the probability that was originally associated with
the market profile of (UPv = 0.03, DOWNv = 0.02, NEUTRALv = 0.02). This gives us a new
weighting on market profiles that shifts weight towards higher values of UPv. Again invoking
our pre-computed estimates of ∆p distributions per market profile, this gives us an associated
weighting on ∆p distributions that represents our guess for what behavior we expect in price
movements, given our intended actions.

Of course, this does not fully capture reality. In live trading, any insertion of activity can
cause a myriad of reactions to that activity, and it’s possible that the end result will be quite
different from a simple addition of this type. This is something we could test if we were already
live trading: does the distribution of the resulting market profile after our 10 minutes of activity
look like the expected additive shift in UPv? This is also something anyone can test in TCA
analysis of historical training data. (All we really need is for the trading activity of one party
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to be labeled so that we can separate it from the rest of the market.) What we learn from real
trading data may inspire us to refine this aspect of the model over time, and to customize it
to account for different tactics for trading within a time window. For now, since we are using
public historical data that does not have trades attributed to parties, we will stick with this base
assumption that the effect of our activity on the market profile is a simple addition. [Spoiler
alert: later in this paper, we will settle on a variant that is still a simple addition, but added
to a variable that is defined differently from UPv.]

Next, we want to collapse these weightings on estimates of ∆p distributions into concise,
digestible numbers we can more easily look at. For this, we’ll first collapse each ∆p distribution
to its average value, and then compute the weighted average of these averages. What we get is
a single number that summarizes our expected price impact.

It is important to remember that we are losing a lot of information here by looking only at
this average, but it’s a reasonable place to start. It’s also important to keep track of the sample
sizes that our numbers are based on, so we know to treat numbers based on smaller samples
with increased skepticism. We’ll use our same weightings to compute an “average” sample size
for each average ∆p value we compute. Keep in mind that we are taking a weighted average of
the sample sizes across all symbols used to estimate our ∆p distributions, not the sample sizes
for our symbol-specific computation of the weights themselves.

We can compute these numbers for different symbols and for different amounts of volume
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that we may plan to buy. Here’s what we get, for instance, for MSFT:

Added Volume Estimated Impact Avg Sample Size

0 0.0000098 1503370

0.01 0.0009910 420047

0.02 0.0014564 75737

0.03 0.0016782 31927

0.04 0.0018048 17581

0.05 0.0017999 11047

0.06 0.0019435 7491

0.07 0.0020908 5406

0.08 0.0020881 4045

0.09 0.0019785 3171

0.10 0.0020859 2509

As the amounts of volume we intend to trade increase, our numbers become more precari-
ously based on smaller sample sizes that may become more and more correlated with unusual
market conditions, since higher amounts of volume trading in 10 minute intervals are not too
common. We can clearly see that phenomenon here, and we should expect that our estimated
impact becomes less and less meaningful as a result.

There are a few things to note about these numbers. First, the fact that the estimates of
impact are not perfectly monotonically increasing is likely an artifact of noise and declining
sample size. But clearly, there is a trend of fast growth, and then it slows and/or devolves into
noise and correlated effects.

Similarly, here’s what we get for BAC:

Added Volume Estimated Impact Avg Sample Size

0 −0.0001170 1311001

0.01 0.0008864 434554

0.02 0.0014896 73719

0.03 0.0017716 29241

0.04 0.0019473 15661

0.05 0.0019847 9673

0.06 0.0020484 6486

0.07 0.0022630 4631

0.08 0.0023015 3435

0.09 0.0022287 2668

0.10 0.0023093 2099

There doesn’t seem to be much deviation per symbol here. This suggests that we may
want to group symbols by similar behavior rather than computing the relative prevalence of
market profiles for each individually. Additionally, it suggests that to the extent that meaningful
deviation between symbols exists, it might reside in the link between market profiles and ∆p

distributions, rather than the relative prevalence of market profiles.
But that’s a problem for another day. Let’s look back on what we’ve done so far, and draw

a full picture of the computational process we’ve developed:

16



17



18



And now we can make some predictions! As long as we stick to trading that we expect
to wholly accomplish within 10 minutes, and we stay inside these volume thresholds that have
healthy sample sizes, and we caution ourselves to remember all of the assumptions and caveats
we’ve made above and ... ugh. This is starting to sound like the side effect list at the end of a
pharmaceutical ad. This is a bit deflating, but fear not! There are things we can do to start
lifting some of these restrictions.

The most basic one is the restriction to a 10 minute time interval. We can repeat all of
our steps above for any length of time interval, say 1 hr, or 1 day. There is a catch though:
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longer time intervals mean fewer observations. For every trading day, there are 6.5 trading
hours (excluding pre and post market sessions for now). And for every hour, there are 6 ten
minute intervals. This means that as we jump from 10 minute intervals to hours and then again
from hours to days as our fundamental unit of time, we are loosing sample size by a factor of
at least 6 at each jump. If we want to combat this loss of data by saying, using a training data
set from a time period that is 6 times as long, we may run into problems. To get comparable
sample size, we’d need to hope that trends that were roughly stable on three month timescales
for 10 minute periods extend to trends that are roughly stable on 18 month timescales for 1
hour periods, and this is already straining our total data availability to test, as we have slightly
less than 3 years worth of total historical data on hand.

There are at least two possible ways out of this dilemma. One is to try to train with less
than 6 times the amount of data for 1 hour increments and see if we can still get estimated ∆p

distributions that pass our robustness checks explained above. We can roughly binary search:
if 3 months of data proves insufficient for studying 1 hour intervals, perhaps 6 months of data
will be enough. If not, perhaps 12 months, etc.

A second possibility will be discussed in the next section: viewing these larger time intervals
as sequences of smaller time intervals. This requires us to imagine how our individual choices
of how much to trade in each smaller interval will combine to effect our overall impact.

6 Prediction with simulated choices across time units

Let’s imagine now that we want to buy an amount of MSFT stock that represents 6% of the total
volume from the previous day, and we want to accomplish this over the next twenty minutes.
There are many ways we could split this into amounts to buy in each of the 10 minute intervals.
We could buy it all in the first interval, or all in the second. We could split it evenly, adding
+0.03 in each interval. We could split it unevenly, adding say +0.02 in the first interval and
+0.04 in the second.

If we intend to trade wholly inside the first interval or wholly inside the second, we already
have our estimate of the price impact. So let’s consider how we might estimate the price impact
of a proposed split, say +0.02 and +0.04. We have an estimate for the effect of our trading in
the first interval - our expectation is that the price will be 0.0015 percent higher by the end
of the first interval than it was at the beginning. (Note here that we use “expectation” in the
formal mathematical sense of average, and the true value will have substantial variation around
this mean.) We might also apply our 10-minute model above to estimate that the additional
price movement in the second interval will be +0.0018 in expectation, now starting from the
higher baseline expectation for the end of the first interval. Putting this together, we might
suppose the final price at the end of the twenty minutes, relative to the starting point, will
be in expectation: 1.0015 ∗ 1.0018 ≈ 1.0033. This is a total expected ∆p of +0.0033 for this
20-minute interval.

Since our estimate here depends upon our choice of how to split our volume over the two
pieces, it would make sense to choose the split that minimizes the total expected impact. Doing
this would allow us to assign a single expected impact value to a twenty minute interval. We
could then derive estimates for 30 minute intervals by taking the minimal impact estimate
over all ways of splitting the volume across a 10-minute interval and a 20-minute interval.
Once we have estimates for 30 minute intervals, we could continue with 40-minute intervals
and so on. This technique is called dynamic programming. It consists of re-formulating larger
problems (in our case, estimates for longer intervals) into sets of smaller problems (estimates for
shorter intervals), and taking the optimal combination of pre-computed solutions to the smaller
problems.
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But remember here that our impact estimates for 10-minute intervals tended to grow sub-
linearly as our added volume increased, at least for the small ranges of volume increases where
we had ample data. Also, the approach we took above for combining our 10-minute interval
estimates into a 20-minute interval estimate implicitly assumed that there is no natural tendency
towards reversion, and that the distribution of market profiles we face in the second interval is
independent of our actions in the first, just starting from a new higher price. All of this together
means that the “optimal” solution will be to place all of the volume in a single 10-minute interval
(at least up to the amount of volume we have in our chart above).

This may be true up to a point, but it may also be an artifact of our model’s assumptions.
To test and potentially loosen these assumptions, a natural next step is to look at pairs of
market profiles for adjacent 10 minute intervals and see if their distributions display meaningful
correlations rather than approximate independence. If this is the case, we will need to adjust
our calculation of the expected impact in the second interval based on a new distribution of
market profiles, informed by our actions in the first interval. We will develop this line of inquiry
in our design of Proof’s trading algorithm, which will be documented in a separate, forthcoming
whitepaper. For now, we will go back to considering single intervals of time, but try to extend
on analysis to longer intervals.

7 Modeling for 1 hour intervals

We’ll next apply the same approach with a different base unit of time: 1 hr instead of 10
minutes. Things get a little clunky given that 1 hr units don’t quite perfectly partition the
trading day, which lasts for the 6.5 hours from 9:30 am to 4 pm. To deal with this, we’ll just
focus on the time period from 10 am to 3 pm each day. Hence, each trading day will correspond
to 5 disjoint observation windows per day. (This means we are discarding trading time periods
near the auctions.) We’ll stick with most of our other choices initially, like rounding UPv,
DOWNv, and NEUTRALv to two decimal places. However, it wouldn’t make sense to use the
same ranges to study our observed ∆p distributions, as the longer time period is likely to lead to
the ∆p values scattering more diffusely across a wider range of values. Hence, we’ll recalculate
new ranges using the same approach we did before - approximately breaking our entire set of
observed values into ranges each containing a similar number of observations.

As before, we end up with rough characterizations of ∆p distributions corresponding to
each fixed (rounded) combination of values for UPv, DOWNv, NEUTRALv. We did this
separately for two time periods: January 2019 through April 2019, and May 2019 through
August 2019. (We increased the length of each time period from 3 months to 4 months, as
a small gesture of compensation for the fact that there are many fewer disjoint 1 hr windows
than 10 minute windows, hence our sample sizes are much smaller.) We can now perform the
same sanity checks we performed above: first, we’ll estimate a weighted “average” of these
∆p distributions. Next, we’ll compute a weighted average statistical distance between our ∆p

distributions and this average. Doing this on the first data set for January through April in
2019, we get approximately 0.35 as the weighted average statistical distance. This indicates
that our estimated distributions are considerably distinct from one another.

Next we test the stability of our estimate over time by comparing our estimates from the
first data collection period with our estimates from the second data collection period: the
weighted average statistical distance between the estimates (matched up by identical UPv,
DOWNv, NEUTRALv values) turns out to be around 0.16. This is comparatively high and a
bit troubling. One could argue that 0.16 is still significantly less than 0.35, and so there is still
evidence of meaningfulness here, but we are stubborn optimists, and we believe better models
should exist. Hence we will refuse to be satisfied with this state of affairs, and we will explore
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further ideas.
So let’s take a step back and reconsider the nature of our problem. By changing our fun-

damental unit of time from 10 minutes to 1 hr, we have effectively cut our sample size by
a factor of 6. We should also expect that the distribution of values for UPv, DOWNv, and
NEUTRALv will be spread out across a wider range, thereby further decreasing the sample
size at any particular combination of these values if we continue rounding them to two decimal
point precision. All of this can understandably result in an increase in the expression of noise
relative to the expression of meaning in our data.

There are some obvious things we can try to counter this relative amplification of noise.
First, we can simply increase the overall length of the time period used for data collection - e.g.
collecting data for each of the training and test data sets over 6 month periods. This is not
a sustainable strategy for dealing with increasing noise, however, as our data access is limited
(we currently have access to less than three full years of historical data as part of our OneTick
service) and we would expect that the patterns we are seeking to fit do shift somewhat overtime.
Hence, older and older data is likely to provide decreasingly meaningful predictions of future
behavior.

Another thing we could try is non-disjoint observation windows. If, for example, we started
a new one-hour observation window every 10 minutes, we would have roughly the same number
of data points we had when were considering disjoint 10 minute windows. Interpreting our
data, however, becomes a bit messier. For instance, things that happen near the beginning
or end of the trading day are included in fewer observation windows than things that happen
near the middle of the trading day (unless we include more partial windows that really don’t
morally match our targeted length). Also, as the windows are overlapping, they do not represent
independent samples and may display misleading patterns coming from induced correlations.
Nonetheless, this may be a viable and helpful approach, and we will likely investigate it in the
future.

For now though, we have a more radical idea. When variation in the observations threatens
to overwhelm the foundation of a modeling framework, there are two somewhat opposite paths
to consider: 1. adding complexity to try to model additional sources of variation and hence
remove them from the “noise” terms, or 2. radically simplify the modelling framework. Let’s
pick path 2. for now.

A good process for simplification is to ground yourself with the question: what am I ulti-
mately trying to predict, and what intermediary steps between my observations and my final
prediction can I possibly skip or condense? We are ultimately trying to predict how the distri-
butions of ∆p values change as a function of increases in UPv. There is no requirement that we
estimate individual distributions of ∆p corresponding to individual values of UPv, DOWNv,
and NEUTRALv in order to do this.

There are a few more direct routes that we could take to our desired destination. As
mentioned briefly above, we could try to fit ∆p as a function of UPv, DOWNv, NEUTRALv

by imposing a form for the function. For instance, we might use linear regression to find the
best fitting model of the form:

∆p ≈ c0 + c1UPv + c2DOWNv + c3NEUTRALv,

where c0, c1, c2, c3 are fixed numbers chosen to minimize distances between our observed ∆p

values and the linear model outputs. We highly suspect from our study of 10-minute intervals
above, however, that a linear model will not be a good fit for the relationship between ∆p

and the values UPv, DOWNv, and NEUTRALv. Other functional forms might be promising,
however, but it’s pretty tricky to guess a good one without exploring the data more first.
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Another thing we can do is stick with our approach of matching up observations that have
the same (rounded) DOWNv and NEUTRALv values, but not bother to group them by these
values. To see more precisely what this means, let’s imagine a concrete example. Suppose we
have a pair of observations:

(∆1
p, UP 1

v , DOWNv, NEUTRALv) = (−0.002, 0.12, 0.05, 0.02),

(∆2
p, UP 2

v , DOWNv, NEUTRALv) = (0.001, 0.18, 0.05, 0.02)

Now, before we were viewing the first as being a sample from the distribution of ∆p when
(UPv, DOWNv, NEUTRALv) = (0.12, 0.05, 0.02), and the second as being a sample from the
distribution of ∆p when (UPv, DOWNv, NEUTRALv) = (0.18, 0.005, 0.02). We were trying to
estimate all these various distributions independently. Then we were assembling these individual
estimates into an overall estimate of how each amount of increase in UPv affected the distribution
of ∆p.

Examining estimates of distributions of ∆p conditioned on the values of (UPv, DOWNv, NEUTRALv)
may be interesting in its own right, but really there is no reason to combine individually noisy
estimates to estimate a quantity that we could instead estimate directly. An alternative view
is to interpret our pair of observations above as a single sample

(∆2
p −∆1

p, UP 2
v − UP 1

v ) = (0.003, 0.06).

Here we are sampling from the distribution of ∆2
p −∆1

p, conditioned on the UP 2
v − UP 1

v value.
We can throw all such samples together, ignoring differences in the DOWNv and NEUTRALv

values, except for the requirement that they need to match in order to generate such a sample of
(∆2

p−∆1
p, UP 2

v −UP 1
v ). Since the number of common values for UP 2

v −UP 1
v is much smaller than

the number of relevant combinations of values for (UPv, DOWNv, NEUTRALv), this means
we will have more data relative to the difficulty of our chosen estimation task.

Let’s step through more explicitly how this view compares with our previous approach.
Before, the value ∆1

p would have gone into the computation of the average ∆p value for
(UPv, DOWNv, NEUTRALv) = (0.12, 0.05, 0.02), while the value of ∆2

p would have gone into
the computation of the average ∆p value for (UPv, DOWNv, NEUTRALv) = (0.18, 0.05, 0.02).
We’ll let N1 denote the total number of observations with (UPv, DOWNv, NEUTRALv) =
(0.12, 0.05, 0.02), and we’ll let D1 denote the sum of the ∆p values for all of these observations
except our ∆1

p data point. Similarly, we’ll let N2 denote the total number of observations with
(UPv, DOWNv, NEUTRALv) = (0.18, 0.05, 0.02) and D2 denote the sum of the ∆p values for
all of these observations except our ∆2

p data point.
The contribution of ∆1

p and ∆2
p to our final estimate of the average ∆p difference when UPv

increases by 0.06 is then proportional to:

N1

(
D2 + ∆2

p

N2
−

D1 + ∆1
p

N1

)
= N1

(
D2

N2
+

∆2
p

N2
− D1

N1
−

∆1
p

N1

)
Focusing in on the terms that depend on ∆1

p and ∆2
p, we have:

N1

N2
∆2

p −∆1
p (1)

Keeping this in mind, let’s return to the mindset of looking directly at our matched pairs of
observations. Now suppose that we estimate the average ∆p difference when UPv increases by
0.06 by taking all such matched pairs with UP 1

v +0.06 = UP 2
v and averaging the ∆2

p−∆1
p values

of these pairs. To write this out in mathematical notation, we’ll let d1 = ∆1
p, d2, . . . , dN1 denote
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the set of all ∆p values corresponding to observations with (UPv, DOWNv, NEUTRALv) =
(0.12, 0.05, 0.02) and we’ll let f1 = ∆2

p, f2, . . . , fN2 denote the set of all ∆p values corresponding
to observations with (UPv, DOWNv, NEUTRALv) = (0.18, 0.05, 0.02). Then our new compu-
tation includes:

N1∑
i=1

N2∑
j=1

fj − di

The final value after adding in the analogous sums for other matched combinations of
(DOWNv, NEUTRALv) values with UPv differing by 0.06 will be divided by the total number
of individual terms fj − di to produce the final average, but we won’t worry about that nor-
malization for now. If we scrutinize the above formula carefully, we see that it can be rewritten
as:

= N1

 N2∑
j=1

fj

−N2

(
N1∑
i=1

di

)

Recalling that f1 = ∆2
p and d1 = ∆1

p for the particular pair of observations that we have
been following, we see that their contribution to this value is:

N1∆
2
p −N2∆

1
p. (2)

Up to the normalization which we have ignored, this is the same as the contribution we
found in (1). To make it the same, we should divide by N2. Thinking through this another way,
we realize that we don’t quite want all matched pairs to have equal weight. In keeping with
our approach before, we want the total contribution for each observation like ∆1

p to be uniform,
regardless of how many observations ∆2

p it gets paired with. Dividing by N2 accomplishes
this. We are then sticking to the principle that probability mass is inherited from the baseline
observations without our activity added, and seeing more samples with our activity added can
yield more accurate estimates of the resulting distributions, but it doesn’t change their relative
weight in our analyses.

All of this means that we can ultimately arrive at the same kind of estimates we were
computing before more directly, without going through estimates of the average ∆p for each
distribution corresponding to fixed values of UPv, DOWNv, NEUTRALv. Of course, if it is
the same result, there is no reason it will be any better! But the important takeaway here
is that we might not need all of the individual distribution estimates to be robust in order
for our final estimate of the impact to be robust. We can instead compute the final estimate
directly and perform sanity checks on the final estimate, without going through the individual
∆p distributions for different (UPv, DOWNv, NEUTRALv) values as an intermediary step.

So how might we check the robustness of the final result? And if we’re not going to provide
estimates of the ∆p distributions for fixed values of (UPv, DOWNv, NEUTRALv), then what
else might we want our model to provide? If we think of the fj − di values above as samples of
a distribution corresponding to the change in ∆p resulting from an UPv increase of 0.06, then
there are many things we can attempt to measure about this distribution beyond its average.
For any quantities we might attempt to measure, one natural sanity check is time stability: if
we compute them over two data sets of disjoint time periods, do we get similar results? Of
course, there may be meaningful changes in the patterns over time, but time scales of say a few
months remain a good candidate for these checks.

In order to get a more holistic sense of the distribution of ∆2
p−∆1

p values over our matched
samples, we’ll compute percentiles that divide our sampled values into 10 ranges, each range
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containing an equal number of samples. The middle breakpoint will be the median, and hence
graphing the location of this as a function of the change in UPv gives us a sense of the “average”
impact of various increases in UPv. We can do the same for other breakpoints, and get a sense
of how the distributions as a whole respond to increases in UPv.

We’ll do this for two sets of data, a three month period covering January through March
2019, and the next three month period covering April through June 2019. For this calculation,
we chose to only match pairs of data points with the same (DOWNv, NEUTRALv) values and
occurring in the same symbol. In our prior approach for 10-minute intervals, we were implicitly
matching such pairs across symbols as well. We suspect that limiting our matches to occurring
within symbol might help eliminate some noise in our matched samples, even though it will
result in fewer matched samples. We’ll combine over symbols by weighting by average daily
notional value. In other words, data for symbols that trade greater typical notional values will
be weighted proportionally heavier in our results.

Here are graphs of the medians, with the y-axis showing the median ∆p value (recall that
this is relative price change over the 1 hr time interval), and the x-axis starting from 0 change
in UPv and going up to 10% change in UPv (i.e. UPv increasing by +0.1). The first graph is
for the earlier time period, and the second graph is for the later time period. The x-axis of
additions to UPv have been multiplied by a factor of 1,000 to make the numbers easier to read.
Thus, a value of “1” on the x-axis corresponds to an addition of +0.001 to UPv (an addition of
0.1% of the ADV of the course of an hour). The y-axis of ∆p differences has been multiplied
by a factor of 10,000 to make the numbers easier to read. Thus, a value of “1” on the y-axis
corresponds to a difference of 0.0001 between the ∆p values of the matched samples.

There are significant differences here of course, but the general pattern is undeniably similar.
As we increase UPv, we see a relatively linear rise in our median estimated impact at first.
Then the pattern degenerates to noise, and ultimately is likely swallowed by bias in the market
conditions under which atypically large trading deviations occur.

Now let’s take a look at all the percentiles graphed similarly together. We’ll cut off the
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increment to UPv at 5% so we can focus in on the more meaningful part of the graphs:

You may notice that the break points for the extremal case of UPv’s increase being 0 are
perfectly symmetric around 0. This is not a coincidence or a bug in our data processing. When
the match criterion for comparing pairs of observations is that the UPv values should be the
same, then each fj − di that goes into the calculation is balanced by the value of di− fj , which
is also thrown in. This creates the symmetry we see in the breakpoints at the far left side of
the graph. We can visually identify a few more interesting effects: the highest percentiles we
are tracking move much more than the lower ones, and all seem to increase for awhile before
devolving into noise. This qualitatively matches the behavior we found for 10-minute intervals
previously.

It is encouraging that the patterns of behavior here seem to be stable enough over time for
us to obtain qualitatively the same results for these two time periods. This is good evidence that
our model is capturing something meaningful. However, there are some important limitations
we must keep in mind. Firstly, “meaningful” does not guarantee “meaning what we think it
should mean.” There are still several questionable assumptions embedded in the combination of
our model design and our interpretation of its results. In particular, interpreting these plotted
curves as showing us the distribution of the change likely to result in ∆p from our trading
activity still involves assuming that UPv and only UPv will move as a result of our actions.
We know this assumption is unrealistic, but the key question is how unrealistic? Trying to
understand and mitigate the error introduced by this assumption is a core question for our
continuing research.

Secondly, by streamlining our model and computing our final estimates of the ∆2
p − ∆1

p

distributions in this way, we have lost opportunities to customize our model to symbols. We
are now directly aggregating our samples of ∆2

p −∆1
p across our symbols into one distribution

and empirically computing percentiles. When we were going through the intermediate step of
computing estimates of distributions for various (UPv, DOWN,NEUTRALv) values for 10-
minute intervals, we had a relatively easy way to combine data across all symbols to compute
those estimates, and then customize the weighting of those individual estimates by symbol. This
seemed like a reasonable compromise between having no symbol customization and sharding
our data into over 8000 disjoint pieces, drastically shrinking our sample sizes. It wasn’t clear
though, how much customization mattered, even for the 10-minute model above. In order to get
a sense of whether this kind of customization is worth it, we should go back and investigate how
different the weights end up being as we range over symbols - it’s possible they don’t actually
differ that much on average, and the customization was more flash than substance.

We can also investigate the potential for meaningful customization by dividing stocks in a
modest number of meaningful groups: e.g. dividing them into a small number of categories
based on average daily volume or notional value. We could then do the same computations
separately on each group and compare the results: if they are not discernably different, we
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may doubt the benefits of customization. If they are discernibly different, we may continue
(conservatively) slicing the data a bit further to see if we can find further benefits to even more
refined groupings, while still checking our results for robustness and trying to make sure they
do not devolve into coincidental quirks of insufficient sample sizes. This is something we will
investigate in a later section of this paper.

8 Modeling for 1 day intervals

To model time units of 1 trading day, we’ll employ the same approach we took in the previous
section for modeling 1 hour intervals. The only real difference is that our values of ∆p are
computed over trading days (comparing the closing trade price vs. the opening trade price for
the interval from 9:30 am to 4 pm), and our DOWNv and NEUTRALv values will be matched
based on their roundings to the nearest 10% rather than the nearest 1% of ADV.

Here are the graphs of the median price impact values as a function of increase in UPv, first
for the earlier time period of January through March 2019, and then for the later time period
of April through June 2019. Our x-axis for percentage increase in UPv will range from 0 to 15%
ADV (not far beyond this, the patterns seem to devolve into noise again):

The pattern again seems meaningfully stable, and qualitatively has a similar shape to what
we found for shorter time intervals. Now let’s take a look at all the percentiles graphed similarly
together:

9 Revisiting and tweaking our methodology

At this point, we can look back on what we have done so far as a good proof of concept.
Qualitatively robust, meaningful trends in the data do seem to arise from our approach, at
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10 minute, 1 hour, and 1 day timescales. But as we prepare to finalize our methodology and
implement it in a tool that allows us to visualize the results and make trading decisions, we
should revisit a few questionable choices we have made so far.

One key choice was our labeling trades as “UP,” “DOWN,” or “NEUTRAL” based on
their prices as compared to the prevailing NBBO. This seems like a reasonable thing to do,
but it doesn’t match exactly with the way large institutional orders tend to be traded. When
large institutional orders are sliced up into smaller orders, many of the smaller orders trade
more passively, executing at the near side or the midpoint of the NBBO, rather than the far
side. In our labeling scheme, many of these smaller trades would get marked as “DOWN” or
“NEUTRAL,” even if the larger original order is a buy order.

However, it is common (in our experience) for these more passive trades to occur in inop-
portune moments. For example, an order to buy at the NBBO price might execute just before
the NBBO moves downward. These kind of phenomena make labeling based on the prevailing
NBBO a little misleading.

To smooth out the influence of NBBO transitions on a millisecond time scale, we can
try a slightly different labeling scheme. We can look instead at how the NBBO moves on a
slightly longer timescale around the trade. More precisely, we’ll compare the prevailing NBBO
at the time of the trade to the prevailing NBBO one second later. If the midpoint of the
NBBO has moved down, we’ll label the trade as “DOWN.” If the midpoint of the NBBO has
moved up, we’ll label the trade as “UP.” If the midpoint has not moved, we’ll label the trade
as “NEUTRAL.” This method of labeling lets us make the market tell us if the trade was
part of a moment of downward, upward, or neutral pressure on price. Naturally, this labeling
scheme has its own caveats: the NBBO moves in reaction to many things, not just the partic-
ular trade, and the 1 second timescale is a bit arbitrary. Nonetheless, we feel that collecting
UPv, DOWNv, NEUTRALv variables according to this new labeling and studying additions to
UPv in this new labeling is a slightly better fit for our purposes.

Another decision worth revisiting is our choice above to measure the difference of ∆p values
for each matched pair of observations. This choice makes the interpretation of our output a bit
murky and indirect. After all, what we observe is the actual prices and ∆’s between them, so
it makes things cleaner if we align our model output with that. This is not too big of a change.
For a pair of observations like (UP 1

v , DOWN1
v , NEUTRAL1

v,∆
1) = (0.12, 0.05, 0.02,−0.0003)

and (UP 2
v , DOWN2

v , NEUTRAL2
v,∆

2) = (0.18, 0.05, 0.02,+0.0001), instead of cataloging this
as a sample of UPv increasing by 0.06 and ∆ changing by ∆2 −∆1 = +0.0004, we’ll consider
this to be a sample of UPv increasing by 0.06 and ∆ becoming ∆2 = +0.0001 as a result. The
weight of this sample in our final calculation will be normalized so that all the pairs that match
with (UP 1

v , DOWN1
v , NEUTRAL1

v,∆
1) with UPv increasing by +0.06 will have equal weight,

and the total weight of these samples will be the weight of (UP 1
v , DOWN1

v , NEUTRAL1
v,∆

1).
The philosophy of this is consistent with our initial approach: we view the lower UPv sample
in each pair as being a sample of what typical conditions might be, and we view the higher
UPv sample as what will result when we insert our behavior into those conditions. Hence we
should look to the first sample for the relative weight of the pair, and the second sample for the
outcome of ∆ that we are trying to predict.

We will also reconsider our units for rounding UPv. For one day timescales, we’ll keep
rounding all of UPv, DOWNv, NEUTRALv to the nearest 1% of average daily volume. But
for shorter timescales, a minimal unit of 1% of ADV is quite large. We’d like to support more
granular units, but if we universally round everything to the nearest 0.1% of ADV instead,
our sample size for each combination of rounded values degrades dramatically. For one hour
timescales, we’ll make a compromise. When trying to model the impact of a large buy order
(which we expect to add to UPv), we’ll still round DOWNv and NEUTRALv to the nearest
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1% of ADV, but we’ll round UPv values to the nearest 0.1% of ADV. This allows us to model
smaller trades over the hour time scale, but we do not suffer from quite as much degradation
in sample sizes as a result. We won’t worry about the 10-minute time scales. We’ll leave those
out for now and focus on modeling impact for hour and day long time scales. More research on
market impact over 10-minute time scales will be forthcoming in the whitepaper detailing the
design of our trading algorithm.

One remaining issue to consider carefully is how we combine information across symbols.
There are many choices to be finalized here. First, do we want to match up observations of
(UPv, DOWNv, NEUTRALv,∆) across symbols? Initially we did make these matches, but it
does seem more natural (and in fact, much faster computationally) to make matches only within
a symbol. This of course reduces our sample size relative to making matches across symbols, but
we suspect that it might result in higher average quality (a.k.a. less noise) of the matches we
do make. So going forward, we’ll only match up pairs of observations within the same symbol.

But once we have collected information about pairs of observations within each symbol, how
do we want to combine the results across symbols? Not combining them and having over 8000
separate models leaves many of the models with too paltry a sample size to be meaningful.
So we want to combine observations across symbols somehow still. One question is: what
symbols should be combined together? At the opposite extreme from fitting a separate model
per symbol, we could fit a single model across all symbols. But there is also fertile ground in
between these extremes. In the next section, we’ll discuss ways of classifying symbols into a
small number of groups. For each group, we will combine observations across the symbols in the
group to obtain a single model. Another question becomes: how do we weight the observations
coming from different symbols within the group? A default choice might be to treat them all
equally. But going forward, we choose instead to weight the observations for a particular symbol
them relative to the average daily notional value traded in that symbol. In this way, symbols
that trade more in dollars are treated as more important than symbols that trade less in dollars.

10 Grouping symbols

There are many properties of symbols that we could consider in trying to define meaningful
symbol groups. A few obvious ones are average daily volume (ADV), average daily notional
value (NV), and volatility. There are many reasonable ways to measure volatility, but since we
are focused on distributions of ∆ values that represent relative price changes from the beginning
to the end of days/hours, we will be interested the volatility of ∆ values in particular. For each
symbol, we can look over our data set and collect samples of ∆’s over days. We can then order
all of these samples from most negative to most positive, and we’ll take the interquartile range,
IQR, (the difference between the 75th percentile sample and the 25th percentile sample) as our
measure of how wildly the ∆ values tend to vary for that symbol.

For each symbol, we’ll compute three numbers: ADV, NV, and IQR (as defined in the
previous paragraph). Are these the only features that might be relevant to the relative price
distributions we are studying? Certainly not. But we want to start conservatively here: the
more features we use in grouping symbols, the more groups we will have, and more groups
means fewer data samples in for each group. In particular, we’ll ignore the NV number for now
in defining our symbol groups. We will still use it in weighting the samples for different symbols
within a group, however.

The values of ADV vary dramatically over symbols. If we want to choose simple orders of
magnitude as cutoffs, a reasonable choice seems to be dividing symbols into three categories:
those with ADV greater than 100, 000, those with ADV between 10, 000 and 100, 000, and those
with ADV below 10, 000. The number of symbols in each group will vary based on what time
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period we use to compute each IQR, but taking January through March 2019 as an example,
we get approximately 3,800 symbols in the high ADV category, 2,900 symbols in the mid ADV
category, and 2,200 symbols in the low ADV category.

We’ll start by considering these three ADV categories as our symbol grouping. For now,
we’ll set our timescale to be one day. It is easy enough to pair up observations within each
symbol according to UPv, DOWNv, NEUTRALv values and then combine the results across
symbols separately within each group, weighting relative to notional value. This gives us three
different impact models instead of one: one model for each symbol group. But how do we know
if these groupings are meaningful? We can look at how different the three models are, but how
do we know if the differences are really caused by distinct behaviors of the symbol groups instead
of just random variation in the data? For this, we’ll take data over all days from 2019, but
we’ll divide the data into two pieces, putting every other day into one piece and the remaining
days into the other. This gives us two data sets that should behave similarly under any robust
model. Now we can train our three symbol group models on each of the two data sets, and we
can see if the two versions of each group’s models are more similar to each other than they are
to the other groups. This is our way of trying to teasing out how much variation is due to noise,
and how much variation is really driven by differences between the symbol groups.

To perform this analysis, we need to again choose a metric for comparing probability dis-
tributions. We could use the same notion of statistical distance that we discussed in Section
3, but there is one undesirable feature of that metric for our context that we can avoid. That
metric compared two probability distributions by measuring how much probability mass had
to be moved to turn one distribution into the other. But it did not account for how far the
mass had to be moved. In our case, we likely want to treat moving some probability mass from
say ∆ = 0.0001 to ∆ = 0.0002 as less meaningful than moving the same probability mass from
∆ = 0.0001 to ∆ = 0.03. So we will refine our choice of metric here to reflect this.

Instead of looking at the individual probability mass on each outcome in isolation, we will
instead compute what’s called a cumulative density function. For each value D that ∆ can
take, the cumulative density function computes the total amount of probability mass that a
distribution places on values ≤ D. So if we graph the cumulative density function from the
lowest ∆ value to the highest, we get a curve that goes from 0 to 1 and never decreases. Here
is an illustrative example:

If we compute CDFs for two distributions and want to compare them, one option is to
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compute the area between the curves:

In this example, the blue CDF picks up mass more quickly on the lower values, while the
orange CDF picks up more mass on the higher values. The area between the CDF curves can
serve as a notion of distance between the distributions that exacts a higher price for shifting
probability mass across a wider range of values. We can see this by thinking of a very basic
example. If we start with two CDFs that are exactly the same, the area between the curves is
0. (No need to illustrate this, because you won’t be able to see the second curve superimposed
on top of the first one.) Now let’s do something rather inelegant. For one of the distributions,
we will take the probability mass accumulated in a certain region and move it all to a single
later value. We’ll plot the new, altered CDF against the original. Then we’ll remove the same
mass again, but we’ll plop it down on an even higher value:

We moved the same amount of mass, but the resulting area between the curves has grown
larger as we extended the wait for the mass to be re-inserted. (If you don’t fully trust your
eyes to compare the two areas, note that the first carved out shape is actually contained in the
second.) You might ask: if this metric is probably better for our purposes than the statistical
distance we used before, why didn’t we just start with it? Well, we didn’t think of it then.
We thought of it now. Shrug. (This sort of thing happens all the time. You just don’t see it
in papers where they write the whole thing pretending they did everything optimally the first
time. Fun fact: they did not.)

Let’s see what happens when we use this “area between CDF curves” measure to study the
various distributions that we built for our three symbol groups on our two data sets. For each
group and each data set, we have an estimated probability distribution for each percentage of
ADV that we might trade over the course of a day (a distribution of what we expect to happen
when we buy 1% of ADV, a distribution for buying 2% of ADV, a distribution for buying 3% of
ADV, etc.) Fixing each value of the percentage of ADV that we are modeling, we can compute
our metric for how different the two distributions for each group are across our two data sets.
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This gives us a sense of how much noise is arising in our modeling process. We can graph the
value of this metric as a function of the percentage of ADV we are modeling. Here are the
results, for the high, medium, and low ADV symbol groups (in left to right order). The positive
integers on the x-axis represent the percentages of ADV that we are modeling buying, and the
numbers on the y-axis represent the areas between the two CDFs computed from the two data
sets.

Figure 1: From left to right: High, Mid, and Low ADV groups

We should note a few things here. Firstly, the noise level in our calculations appears to
be considerably higher for the low ADV symbol group than the other groups. Secondly, our
calculations tend to display more erratic behavior as we model bigger and bigger trades (which
makes sense, as the sample size of observations that look like this behavior drops off steeply).
Let’s compare this to what happens when we compute this same metric across two groups in
one of our data sets:

Figure 2: From left to right: High ADV vs. Mid ADV,
High ADV vs. Low ADV, Mid ADV vs. Low ADV

The distances we’re getting here between distributions for the Mid ADV and Low ADV
groups computed on the same data set are not that much larger than the distances we get
between the low ADV group distributions computed on the two data sets. This suggests that
modeling this low ADV group separately may not be worthwhile, and hence we’ll err on the
side of restoring higher sample sizes and re-combine the low and medium ADV groups into a
single “non-high” ADV group.

Next let’s consider another potentially relevant feature: volatility of daily ∆ values as mea-
sured by IQR. The values of IQR vary considerably over symbols, mostly within the range from
0.001 to 0.03. (Recall that a IQR of 0.01 for example, means that the 75th percentile of the
daily ∆ values in this symbol minus the 25th percentiles equals 0.01.) In the interest of choosing
memorable round numbers, we can divide the symbols into three categories: those with IQR less
than 0.01, those with IQR between 0.01 and 0.02, and those with IQR above 0.02. The number
of symbols in each group will vary based on what time period we use to compute each IQR, but
taking January through March 2019 as an example, we get approximately 3,400 symbols in the
low IQR category, approximately 2,400 symbols in the mid IQR category, and approximately
3,500 symbols in the high IQR category.
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If we divide symbols by both criteria (ADV and IQR), we get six groups: high ADV and high
IQR, high ADV and mid IQR, high ADV and low IQR, non-high ADV and high IQR, non-high
ADV and mid IQR, and non-high ADV and low IQR. Since these names are a little technical
and non-intuitive, we’ll use the terminology active/inactive for high/non-high ADV, and we’ll
use stable/volatile/highly volatile for low/mid/high IQR. Our groups will vary in membership
depending on what time periods we use to compute ADV and IQR for each symbol, but as
an example, using data from January through March 2019, we get the following group sizes:
there are 2507 symbols in the stable, inactive group, 1066 symbols in the volatile, inactive group,
1486 symbols in the highly volatile, inactive group, 691 symbols in the stable, active group, 1315
symbols in the volatile, active group, and 1824 symbols in the highly volatile, active group.

Let’s take a look at our resulting distributions of price ∆’s for some of these groups. To get
a sense of what’s happening in a particular group on a particular data set, we can plot the 10th,
20th, ..., 90th percentile lines of the ∆ distributions as a function of trade size we are modeling.
Here are the resulting graphs for our most extreme groups, the stable, inactive group and the
highly volatile, active group over one of our data sets:

Figure 3: From left to right: stable, inactive group and highly volatile, active group

The units for our x-axis here are 1 = 1%ADV for the buying behavior being modeled, and
the units for the y-axis are 1 = 0.0001 for the relative price change ∆.

Here are the analogous graphs for our other data set:

Figure 4: From left to right: stable, inactive group and highly volatile, active group

We can observe here that the these two extremal groups at least behave fairly consistently
across the two data sets, and behave distinctly from each other. The greater spread of ∆ values
for the highly volatile group matches what we would expect from that group by definition, and
it’s not too surprising that the upward trajectory of the ∆ percentiles as a function of the (buy)
volume being modeled is cleaner, as we would expect the more active group to have a larger
sample size of activity to support the modeling. (This is indeed the case. As a typical example,
the distribution for the first data set for x = 7%ADV is based on a sample size of about 5, 000
observations in the stable inactive group, and about 10, 000 observations in the highly volatile
active group.)

As above, we can apply our distance metric for comparing CDFs of distributions to get a
baseline for how much noise might be in our model outputs per group. Here are the graphs for
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the six groups, where the distance between empirical distributions is computed across the two
data sets, within each group:

Figure 5: From left to right: stable inactive, volatile inactive, highly volatile inactive

Figure 6: From left to right: stable active, volatile active, highly volatile active

In general, we see there is a trend of increased variation as the volatility increases or the
size of the modeled trade increases. Keeping this in mind, let’s look now at the levels of
variation between some of the groups across the same data set (computed with the same metric
and units). We’ll start by holding the inactive/active category constant, and we’ll look at
comparisons across the range of stable/volatile/highly volatile:

Figure 7: From left to right: (all inactive) stable vs. volatile,
volatile vs. highly volatile, stable vs. highly volatile

Figure 8: From left to right: (all active) stable vs. volatile,
volatile vs. highly volatile, stable vs. highly volatile
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All of these comparisons across groups as the volatility changes show a higher level of differ-
ence between the measured distributions than we saw when we held the groups hold constant
and varied the underlying data set. This gives us confidence that our grouping by volatility is
meaningful.

Now let’s look at what happens when we hold IQR category of stable/volatile/highly volatile
constant, and vary the inactive/active category:

Figure 9: From left to right: (all inactive vs. active) stable, volatile, highly volatile

The comparison here between the stable active group and the stable inactive group on a
single data set seems to be similar in magnitude to the comparison of the stable active group
to itself across the two data sets. The comparison here between the volatile active group and
volatile inactive group is similar in magnitude to the comparison of the volatile inactive group
to itself. Only in the comparison of the highly volatile groups does the magnitude here clearly
surpass the noise in the individual groups themselves as the trade size increases.

Overall, the evidence for distinct behavior of groups according to volatility categories is much
stronger than the evidence for distinct behavior of groups due to activity categories. There is
one more trick we can try to make our models a little cleaner. So far we’ve been computing
∆ values from the first and last prices for each symbol, but we haven’t tried to account for
general movements of the market that affect many symbols at once. Subtracting out these kind
of general trends can reduce some of the noise in our ∆ values relative to the per-symbol trading
dynamics that we are trying to model. We can this “distilling” impact, and we presented our
preliminary methodology for it in our previous whitepaper [].

If we apply our distillation technique to subtract out our approximations of wider market
effects from the ∆’s we are modeling here, we get distributions that are slightly more symmetric
and slightly more condensed. For example, here are the 10th, 20th, etc. percentiles graphed as
a function of the size of the (buy) trade being modeled, for both the raw and distilled deltas in
the highly volatile, active group for one of data sets:

Figure 10: From left to right: raw and distilled distributions for the highly volatile active group

Here are analogous graphs for the stable active group:
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Figure 11: From left to right: raw and distilled distributions for the stable active group

Now let’s repeat our analyses using our metric to compare distributions within and across
groups. We’ll start with the baseline calculation of the groups each compared to themselves
over the two sets, but this time with distilled ∆’s instead of raw deltas:

Figure 12: From left to right: stable inactive, volatile inactive, highly volatile inactive (all
distilled)

Figure 13: From left to right: stable active, volatile active, highly volatile active (all distilled)

Now let’s compare pairs of groups again where the stable/volatile/highly volatile status is
held constant, and we vary the inactive/active status:

Figure 14: From left to right: (all inactive vs. active) stable, volatile, highly volatile

These graphs suggest that at least for somewhat low values of % ADV being traded, the
variation between groups as a function of inactive/active status is a bit higher than the variation
within those groups across data sets. As a result, we choose to stick with these six groups of
symbols for now rather than condensing them to fewer groups.
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11 Summary of our current model and the accompanying pre-
trade tool

Putting all of this together, we arrive at what we promised in the beginning: an empirically built
model for how the distribution of likely prices changes as a function of how much directional
volume we might insert into the market over a specified time scale, customized to symbol groups
based on daily price volatility and average daily volume.

We discuss now what kind of questions can we ask such models, and how we might interpret
their responses. A question might start with a specific symbol, let’s say BAC. Suppose we try
to buy a total of 2 million shares of BAC tomorrow. How do we expect our buying activity
to affect the price? To get our model to answer to this question, we first have to translate it
into the proper units. In recent months (a data set of May through July 2020), BAC has an
average daily volume of about 47 million shares, and its daily price fluctuations place it in our
volatile, active symbol group. Our proposed size of 2 million is thus roughly 4% of ADV. Our
methodology gives us an empirically computed distribution for how we expect the relative price
of volatile, active symbols to behave in response to buying 4% of the ADV. We can consult this
distribution to extract information like: “there is a 75% chance that the price will increase by at
most 1.5% over the course of the day” and “the median price increase under such circumstances
is 0.2%.” (Note that these numbers are intended to encapsulate the total expected price behavior
including market trends, not just the amount “due” to your impact. To gauge how much is
“due” to trade impact, you can compare these numbers for different considered trade sizes.) If
we want to translate this into dollars instead of percents, we just need to know the starting
price of BAC. Naturally, we won’t know ahead of time what tomorrow’s opening price for BAC
will be, but we can get a rough illustration by looking at some other recent price instead. At
the moment of this writing for example, the price of BAC is $25.46. In which case, a median
increase of 0.2% would correspond to a price movement from $25.46 to 1.002 ∗ 25.46 = $25.51.
We can compare this, for example, to the median increase we expect if we were to try to buy
3 million shares instead, representing about 6% of the ADV. In that case, our data for volatile
active symbols suggests a median price increase of 0.3%, corresponding to a price movement
from $25.46 to 1.003 ∗ 25.46 = $25.54.

We’ve provided a pretrade analysis tool that allows you to play around with our data and
visualize the distributions we’ve computed for various trading scenarios. The tool is available
at: [link]. It will allow you to graph the distributions that arise from our methodology and get
summary statistics. You can choose between seeing raw price deltas and distilled price deltas.
You can also choose between viewing price changes in percentages, basis points, or dollars
(translation to dollars uses a recent price for the chosen symbol, extracted from a market data
source, just like we did in the above paragraph). If distillation is working as intended, distilled
price deltas should be more symmetric around zero than raw price deltas, and the distribution
should be slightly more concentrated near 0.

As mentioned above, it’s important to note that when we are looking at raw price deltas,
the general trend of the market over the period of data collection is baked into our numbers.
So we should not look at absolute price increases in isolation, but rather should look at how
they compare to the expected price change if we trade nothing. In our BAC example, the
median price change for a modeled trade size of 0 is +0.1%, suggesting that BAC prices tended
to go up over the course of days in our recent data set (which is drawn from the last three
months). You can see in the summary stats when we model our buy trade of 4% ADV that the
median increase of 0.2% is also reported as (+0.1%) compared to the median we expect when
we don’t trade. This is intended to give you the proper context of general market activity for
this symbol group so you can see the difference to expect based on your activity. We could have
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decided to only show the difference rather than the raw number, but we felt this might create
false expectations, as the price you attain is the actual price, not the price adjusted for general
market activity. Especially if you later perform analyses on your trades that does not adjust
for the general market activity, this could result in a disconnect between context of the model
predictions and the context of your analyses. Looking at distilled deltas largely removes this
issue.

It’s extremely important to keep in mind the severe limitations of our methodology when
viewing and interpreting all of these distributions. First, we do not have sufficient sample size
to do a separate model for each symbol, so the results are always aggregated over a symbol
group, and will never reflect more granular idiosyncracies of a particular symbol.

Second, it’s important to remember we do not have a vast historical data set of trades
that are labeled by party, so we are matching up pairs of days unlabeled trading days that
“roughly differ” by trading activities that “roughly look like” the activity we’re trying to model
(buying 4% ADV, selling 5% ADV, etc.). Each pair of quotation marks in that sentence hides
a multitude of sins. Naturally, as the activity we are trying to model gets bigger (e.g. buying
10% ADV instead of 4% ADV), the number of candidate examples of it that we identify in our
historical market data gets smaller. You can see this in the “Sample Size” value that is provided
as part of the summary statistics. This is the raw count of how matched pairs of days we found
to inform this particular distribution. As the number drops, the quality of the data degrades,
and you can see the empirical distributions looking spikier and behaving less intuitively.

On a related note, it’s also important to remember that our data matching process looks for
the full trading activity we are modeling, so this biases our sample to times where that amount
of trading was accomplished not attempted. This bias can be considerable, and certainly grows
as the trade size grows. For example, days on which it looks like someone came in and managed
to trade 12% of ADV are not only rare, but they are likely to be heavily correlated with market
conditions that made it possible for that kind of activity to be accomplished. In some sense,
our analysis in its current form is not directly capable of answering the question: “what will
happen if I try to buy X shares” but is rather trying to answer the question: “what will happen
if I do buy X shares?” The difference here is that the fact of succeeding in completing the trade
biases the distribution. Even worse, our approach of matching pairs of trading periods that
seem to differ by the activity in question means that for large activities, the trading days that
match up as being the same except for missing that large activity are biased to be days with
a lower level of activity over all, so that a match with the larger activity present exists in the
first place. Days that have no match relative to the activity in question are dropped from the
analysis.

Overall, we should apply a quickly increasing skepticism to our numbers as the volume
pressure we are modeling increases. But our hope is that for reasonably low volume pressures,
our distributions do reflect reality in a meaningful way. Some positive evidence of this is that
they behave intuitively for these low pressures, and do seem to be qualitatively robust to our
minor modeling decisions. (As detailed above.)

You may notice in the tool that the median of the distilled delta distributions sometimes
stays stubbornly put, even as you increase the size of the trade you modeling. This appears
to be a feature of the way our distillation methodology behaves. It often places a lot of mass
essentially at 0, hence the median stays at 0 for quite some time, even as the overall distribution
does begin to shift mass mostly in one direction of the other. This makes the median less useful
as a summary statistic for distilled delta distributions.

Addendum When loading very recent data into the tool (specifically data from July-September
2020), we noticed that a few symbols traded remarkably high notional values in this period. In
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particular, TSLA traded an average daily notional value of nearly 19 billion dollars, dwarfing
the median for its highly volatile, active group which was about 7.5 million dollars. Under the
notional value weighting within the group employed by our analysis, TSLA represented over
10% of the weight.

Concerned that this would overly skew the analysis and make it less representative for other
symbols in the group, we decided to exclue any symbols whose notional value was greater than
1000 times the median notional value of symbols in their group. This filter is pretty mild,
and for the time period from July-September 2020, it only excludes three symbols: TSLA,
AMZN, and AAPL. (All three of these symbols were in the highly volatile, active group.) We
believe this helps protect our group analyses form undue influence of extreme outliers. Since our
group analyses are weighted by notional value, this is the same metric we use for our exclusion
criterion.

12 Directions for further research

There are several further directions that we are pursuing to enhance this research. They mostly
fall into two categories: 1) exploring ways we might make the model simpler and 2) exploring
ways we might expand the model’s predictive power to a wider and more realistic set of situa-
tions. For category 1), we’ll continually be looking for ways to simplify our model and adopting
any that do not cost us significant accuracy or breadth. For category 2), we’ll continually be
looking for ways to make our model better fit reality, or at least reasonably fit a wider range
of realities. These two categories of improvements should always be pursued in parallel: every
time we change our model to make it more accurate or more expansive, we should re-evaluate
its complexity and see if the same level of accuracy/breadth/etc. can be achieved in a simpler
way. This kind of thinking will protect us from model bloat: a typical consequence of iteratively
making models more complex without iteratively simplifying them.

1. Potential simplifications One potential simplification we can explore is a simplification
of the market profiles. Do we really need the NEUTRALv number, for example? We might
hypothesize that this number has less impact on the ∆p distributions than DOWNv and UPv

numbers, as volume at the midpoint (hypothetically) does not betray whether the buyer or seller
was acting with greater urgency. However, it’s also reasonable to guess that the magnitude of the
effect of an imbalance between DOWNv and UPv might be influenced by NEUTRALv value.
Another potential simplification could come from trying to combine our models over different
timescales (e.g. 1 hour and 1 day) into a single model with time as a parameter. This rests on
questions like: what can the various time scale models tell us about each other, and about time
scales in between? For instance, how do the models suggest that, say, adding +1%ADV to UPv

in each hour compares to adding +6%ADV over a whole day? Can comparisons between our
various models guide us in interpreting sequential intervals, which we struggled with applying
to our 10-minute intervals so far?

2. Potential extensions and mitigations of model limitations An important next step
is to investigate any correlations between the distributions of market profiles for adjacent time
intervals. This could potentially allow us to model reversion effects in a realistic way. This will
be further explored in our upcoming whitepaper on the design of Proof’s trading algorithm.

Another important extension would be to compute not just the expected price impact for
longer time intervals when we piece smaller time units together, but also more information
about the overall ∆p distribution. This requires us to think carefully about how to combine
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distribution models for adjacent time intervals, and also how to designate an “optimal” split of
the volume over the two intervals.

Another important direction is to investigate potential effects due to time of day, especially
in and around auctions. Right now our 1 hour time intervals are all thrown together to maximize
sample size, but this may be mixing legitimately distinct behaviors that appear at different times
of day and it would be helpful to separate those out.

Beyond time of day, there may be other helpful features to add to our market profiles or to
use to group symbols. Some possibilities include size at the NBBO, relative fraction of trading
happen on exchange vs. off exchange, and average trade size. Looking at features of quotes
is particularly motivated by considering how a passive-only VWAP algo behaves in practice:
buyers trading this way might actually cause the amount of down volume to grow (since they’re
just holding the price up), but they’d also probably cause the bid size to be larger than normal
and almost certainly cause the bid cancellation rate to be lower than normal. We will pursue
these possibilities in our ongoing research, though we must be disciplined about adding features.
Adding features will increase model complexity and hence increase the amount of data we need
for reliable fitting.

3. Other variations There are many other minor variations to our model that we could
investigate, such as looking at volume weighted average prices for each interval instead of last
prices, etc. Our main philosophy is to avoid exploring minor variations unless there is a driving
reason. As a general rule, testing multiple different minor variations for no particular reason
can lead to unnecessary levels of noise in our analysis, and we may become confused as to
which changes we’re making are actually having an impact and which are meaningless. That
being said, minor variations can be a good source of additional robustness checks, if we are
concerned that our results may not be sufficiently vetted by our other sanity checks and we
want to confirm that the behavior we observe is qualitatively the same under minor variations
of our model definitions.
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