A Volume-Weighted Average Paper

Allison Bishop*

1 Introduction

Very few things about stock market prices are straightforward. Most people know they can vary quite quickly
as a function of time. But this is just the first of many complications. You can’t just ask: “What is the price
for Apple right now?”, because the answer can depend on if you're buying or selling, how many shares you
want to buy/sell, where you want to trade, and even how you ask. If you want to trade a significant amount
of stock, you may obtain more favorable prices by splitting your large order into many smaller orders, spread
out over time and space.

It is the task of algorithms to decide how to distribute orders over time and space to try to achieve “good”
pricing for large amounts of trading activity. But how do we define the goal “good” pricing? Naturally, we
want to buy low and sell high, but low and high are comparative terms. Low and high compared to what?
If we take two different algorithms and use them to perform two different sets of trades, it’s very hard to
tell if the different prices achieved reflect a meaningful difference in algorithm performance, as the market
conditions may vary widely between the two data sets.

There are several approaches to this problem. Elsewhere in our research, we chip away at the approach
of characterizing market conditions by coarse features and attempting to flesh out patterns in how prices
respond to such features. But here, we’ll take another common path: targeting a volume-weighted average
price, a.k.a. VWAP.

The spirit of a VWAP algo is perhaps best described as an "T’ll have what he’s having” approach. As
a metric, VWAP is motivated by the following reasoning: if it’s hard to mitigate the “noise” of the market
that impacts the prices of trade, then perhaps we should compare those prices to something that is subject
to the exact same noise. The something is the volume-weighted average price obtained across all trades in a
particular stock for the same time period we are trading that stock. For example, let’s suppose we are buying
shares of MSF'T throughout a trading day, and we ultimately purchase 10,000 shares for a total of 2,000,000
dollars. Then the volume-weighted average price for our shares is 2(1)88880 = $200. On the same day, let’s
suppose that a total of 300,000 shares of MSFT were traded, and a total of $59,850,000 dollars changed
hands as a result. Then the volume-weighted average price across the market for that day is $199.50. In this
case, we view $199.50 as the benchmark for our trading, since it averages prices obtained by others trading
the same stock during the same time period as us. In this case, we paid a little more than the benchmark.

As a metric for algorithmic performance, comparing our VWAP to the general market VWAP has some
pros and cons. For one thing, it does considerably remove noise from our measurements. However, it also
introduces a circularity: we are measuring ourselves against a benchmark that we also influence. If we are
trading heavily, our own activity will impact the prices across the market. This creates a blind spot for price
impact to hide: whatever impact makes it into the benchmark will not show up in the difference between
our performance and the benchmark. For this reason, we continue to explore alternative metrics elsewhere
(see https://www.prooftrading.com/docs/distilled-impact.pdf).

Another pro of VWAP is that it suggests a natural secondary goal: distributing your trading volume
throughout the day in a way that is similar to how overall trading volume is distributed. This goal is
related to a well-defined prediction problem. In the next sections, we will formulate this prediction problem,
introduce our preliminary approach, and summarize our results and the first version of our VWAP algorithm.

*Proof Trading, allison@prooftrading.com

2 Defining the Prediction Problem

Suppose we want to buy X shares of a particular stock over the course of a day, and we want to match the
volume-weighted average price as closely as possible. For now, we’ll imagine we are going to start trading
at the beginning of the trading day (including the opening auction) and stop trading at the close (putting
any remaining volume into the closing auction). Later we’ll discuss cases where we are seeking to trade over
a smaller time interval that may start later or end earlier.

A typical approach to this is to try to trade roughly in line with the “volume curve,” meaning that if
10% of the day’s volume trades within in a certain time window, then we try to buy about % shares within
that time window. We should note up front that this may not be necessary: someone could offer a crossing
mechanism, for example, that matches shares to be traded and waits for the true VWAP price of the day to
be determined before pricing the trades.

But for now, we’ll stick to thinking about the volume curve. We start to see the challenge when we zoom
in on the phrase “10% of the day’s volume...” in our above example. This is something that will not be
known until the end of the day. If we divide the trading day from 9:30 am to 4 pm into disjoint 10-minute
buckets of time, for example, by 9:40 am we will know how much volume traded in the first bucket, but we
will not yet know what percentage of the day’s total this represents. But we are already facing the decision
of how many shares do we want to try to buy over the next bucket. Clearly we cannot wait until the end of
the day to decide that.

There is a mismatch here between the units of our task (buy X shares), and the units of volume we are
trying to match (trade Y% of volume in this time interval). If we wanted to say buy X% of the volume over
the course of the day but we didn’t care how many absolute shares this represented, then we could easily
track our progress against this metric in real time and try to slow down or catch up as desired. If we wanted
to say buy X shares out of the next Y traded shares, we could similarly track our progress in real time. But
wanting to buy an absolute number of shares and distribute it proportionately makes is less obvious how we
might use real time data to adjust our actions. Perhaps this is why many VWAP algorithms largely ignore
real time data and rely upon “volume curve” predictions informed by recent completed trading days.

A typical default is to look at, say, the last 20 completed trading days, and compute the average percentage
of volume falling into each time bucket for each symbol. We can equivalently view this as giving us a
prediction for the cumulative percentage of volume that we expect to have traded by the end of each time
interval. If we treat this prediction as truth, we know what we should do at the beginning of each interval.
If we have traded Y% of our X shares so far, and we expect Z% of the day’s volume to have traded by the
end of the interval, than we should try to trade an additional (Z — Y)% of our X shares in this interval.

For visualization purposes, let’s make the (false) simplifying assumption that over each interval, the
volume trades at a steady rate. In fancy terms, this means we are approximating the cumulative volume
percentage by a piece-wise linear function of time. In other words, we are imagining that the percentage of
volume traded so far as a function of time behaves something like this:

g

0

% of volume

9:30am 4:00pm
fime

So if we have been right on target so far, and we correctly predict where we want to be by the end of the
next interval, we know what we need to do:

by

% of volume

.0

prediction gt
" howwe
e should
frade
i
9:30am current 4:00pm
fime

But of course, reality is unlikely to be that cooperative. And solely using pre-computed averages leaves
us no mechanism for adjusting when we are off. After the day is completed, we’ll know the true picture,
and we can evaluate our performance. We can plot the true curve of cumulative relative volume versus time,
which we’ll call Truth(t), and the curve of our trading, which we’ll call Us(t):

g

% of volume

0

Truth

Us

9:30am

4:00pm
time

There are many reasonable choices for how we might quantify our error, but we will choose the total area

between the curves.

by

% of volume

.0

4:00pm
time

In math-speak, that is the integral of |Truth(t) — Us(t)|. We like this metric for several reasons. It is
easy to visualize, and intuitively punishes us equally for being ahead or behind. It also reflects our desire to
correct errors as quickly as possible. For example, if we are currently behind and we are seeking to minimize
|Truth(t) — Us(t)|, we should want to catch up as quickly as possible, rather than say gradually making up
our deficit over the remaining time. This is desirable behavior because the price of later trading is likely to
deviate further and further away from the current price, so making up our deficient later is likely to result
in greater deviation from the VWAP price than making it up now. Setting a goal of minimizing the integral
of |Truth(t) — US(t)| over time is one way of incorporating this. (There may be an exception if we are so

far behind that our quickly catching up would be unusual and likely to cause inordinate price impact. But
generally, we believe that catching up small amounts sooner rather than later is a sound strategy under this
metric.)

So how might we reduce our error according to this metric? Let’s suppose that we could use real time
data to make higher quality predictions of what percentage of the day’s volume has traded so far as well
as what percentage will have traded by the end of the next time interval. Our updated predictions might
suggest that we are ahead or behind our target. If our goal is to minimize the area between the Truth(t) and
Us(t) functions over time and we think we are behind, we should attempt to immediately catch up and then
follow a linear path to the next predicted value. If we think we are ahead, we should wait for our prediction
of Truth(t) to catch up to us and then follow a linear path to the next predicted value:

O
1.0 A0 10 7
catchup =~ | O >0’
= = wait and rejoin
2 S
S 5
BN &
0 } 0 i
9:30am current 4:00pm 9:30am current 4:00pm
time fime

What we need to implement this strategy is: 1) a prediction of the current cumulative volume percentage
and 2) a prediction of the next cumulative volume percentage. Clearly, the typical 20-day rolling averages
could be used as a default for these, but next we’ll see how to use real time data to improve the quality of
these predictions.

3 Predicting cumulative relative volume with real time data

For a given symbol over a given trading day, we’ll let R(t) denote the cumulative relative volume traded up
to time ¢. In other words:
R(t) := (Volume traded from 9:30 am up until time ¢) / (Volume traded from 9:30 am through 4:10 pm).
To accommodate the fact that the closing auction sometimes occurs slightly after 4 pm, we have used
the cutoff time of 4:10 pm instead of 4 pm sharp. We’ll let V(¢) denote the volume traded up to time ¢, so
we can rewrite this as:

R(t) :=V(t)/V(4: 10pm).

We note that at time ¢, V(¢) is known, but R(¢) is not yet known.
We'll be breaking the day into 10-minute intervals, so we are focusing for now on the discrete sequence
of values:

R(9 : 30am), R(9 : 40am), R(9 : 50am), ..., R(3 : 50pm), R(4 : 00pm), R(4 : 10pm).

Note: it is a delicate issue how best to handle the open and close. Likely these should be treated
individually and not mixed in with the rest of the trading day. For now, we’ll abuse notation a little and
think of R(9 : 30am) as indicating the relative volume of the opening auction, R(4 : 00pm) as indicating
the relative volume of the opening auction and regular trading day exclusive of the closing auction, and
R(4 : 10pm) as including the closing auction.

Let’s use tq, t2,... etc. to denote our discrete sequence of times. At time ¢;, we want to make a prediction
for both R(¢;) and R(¢;+1). We emphasize that R(t;) is not known at time ¢;, as only the numerator of R(¢;)
is known at time t;, not the denominator.

We'll first assemble some pieces of historical information that may be highly relevant to predicting R(t;)
and R(t;+1) on a given day.

AV GR(t;) := arolling 20-day average of R(t;)
AV GR(tiy1) := a rolling 20-day average of R(t;11)

ADV := AVGy (4 : 10pm) = a rolling 20-day average of daily volume

In order to start with a minimalist set of features, we’ll use the values of ADV, and V (¢;) to compute a
single feature with an intuitive interpretation:

A(t;) == V(t:)JADV

The numerator here is the actual volume that has occurred. Dividing by the average daily volume makes
this a rough indicator of how far off we might be from where we expected to be at this point.

We next investigate whether considering the value of A(t;) as well as the value of AVGR(t;) allows us
to form a better estimate of R(t;) than using AVGg(¢;) alone. Similarly, we’ll investigate if considering the
value of A(t;) as well as the value of AVGR(t;+1) allows us to form a better estimate of R(¢;41) than using
AV GR(tiy1) alone.

What we’ll do is group observations of our training data by their values of AVGRr(t;) and A(t;), rounded
to the nearest two decimal points and one decimal point respectively. In each group, we’ll compute the
average value of R(t;) (weighting all observations equally within each symbol, but averaging across symbols
weighted by notional value). We’ll also do the analogous computation of the average value of R(t;11) for
groups determined by their rounded values of AVGRg(t;4+1) and A(t;). This gives us two look-up tables:
conditioned on the values of AVGR(t;) and A(t;), we can look up a prediction for R(t;), and conditioned on
the values of AVGg(t;4+1) and A(t;), we can look up a prediction for R(¢;+1). [Technical aside: we omit from
our tables any variable combinations that have a sample size <= 100. In these cases, the 20-day averages
are used as defaults.]

By simple inspection of these tables, we see that the predictions do vary considerably from the AVGg(t;)
and AVGR(ti+1) values as the A(t;) values vary, suggesting that the A(t;) variable is indeed meaningful for
predicting R(¢;) and R(t,).

We can compare these new look-up table predictions against the default of using AVGr(t;) and AVGR(tit1)
on fresh test data. We trained the tables on data from January through March of 2019, and tested them
on data from April through June 2019. In the test, we computed the average sum of squared errors in the
default estimates for R(¢;) and R(t;+1) for each symbol, and then we averaged these over symbols weighting
proportionally to the notional value traded in each symbol.

The (notional value-weighted) average sum of squared errors in the default estimates for R(¢;) and
R(t;+1) was 0.0135, while the analogous value for our table look-up estimates was 0.0106. This represents a
meaningful improvement.

To see if this held up for more tumultuous times, we also trained tables on data from January through
March of 2020, and tested them on data from April through June 2020. The average sum of squared errors
in the default estimates for Rt;) and R(t;;1) was still 0.0122, while the analogous value for our table look-up
estimates was 0.0103. (Note that we are squaring errors so that overestimates and underestimates are both
penalized, but it’s important to keep in mind that squaring numbers less than 1 makes them smaller. So the

average individual error in magnitude here is more like ~ 4/ % = 0.07. So we're saying that our individual

estimates of cumulative volume percentages are typically off by about 7% with this technique, compared to
about 8% for the baseline of 20-day averages.

The numbers for 2019 vs. 2020 were similar enough that we might wonder: how much does it matter
when we train our table? Maybe the relationship between our variables is relatively stable over time. So
we ran the same test on 2020 data (April - June again), but with the tables fit from 2019 data. The (NV-
weighted) average sum of squared errors this time was still 0.0122 for the baseline (this is identical because
it’s unaffected by the tables) and became 0.0101 for the estimates assisted by our table look-ups. This is

some evidence that the relationships between the variables are fairly stable over time, and may not benefit
from frequent re-fitting.

It should be noted that the “20-day” quantities above were computed with time periods lasting 20
calendar days, not trading days. Given that trading does not occur on the weekend, approximately 30
calendar days would be needed to cover 20 trading days. We redid the approach above using 30 calendar
days instead, training the tables of data from Jan - March 2019 and testing on data from April - June 2019.
The NV-weighted average sum of squared errors this time was 0.0133 for the baseline and became 0.0106
when using the trained lookup tables. Using those same tables and testing on data from April - June 2020
yielded 0.0121 for the baseline and 0.0102 when using the lookup tables. Thus, there doesn’t seem to be
much difference between using 20 or 30 calendar days for the rolling averages. [We should note an annoying
detail of our analysis setup. The “N-day” averages for the first N days in our input to a query are actually
less than N-day averages: they are averages from the start of the input to the current day. This “wrong”
initial condition affects the first 30 days in our input when we increase N to 30. Obviously fixing the analysis
setup would be preferable to leaving it, but it’s too annoying to be worth it at the moment.]

We note that the V(t;)'s, R(t;)’s, and the ADV are the only variables that need to be referenced for
each symbol, which makes the resulting algorithm relatively easy to implement.

4 Extension to partial trading days

Let’s now consider extending the reasoning above to cases where we have an intraday order with a start time
that is past 9:30 am, and/or an end time that is before 4 pm. To make things concrete, let’s imagine the
order arrives at 1 pm and should finish trading by 2 pm, and it is an order to buy X shares. At 1 pm when
the order starts, we have an estimate (based on historical data as well as real-time trade data so far) of what
percentage of the total day’s volume has already traded as of 1 pm. We also have an estimate for how much
of the day’s volume will have traded by 1:10 pm. But to decide how many of our X shares we should try to
buy between 1 pm and 1:10 pm, we need to know one more thing: what percentage of the day’s volume do
we expect to have traded by our end time of 2 pm?

This reveals two new variables that were held constant when were only talking about full trading days:
the percentage of volume traded before we started was fixed at 0, and the percentage of volume traded by
our end time was fixed at 1. While these percentages at particular times were held constant, our estimates
of percentages at other times could change and could become inconsistent as new data arrives. For example,
we might estimate at 10 am that 10% of the day’s volume has already traded by 10 am. But by 11 am based
on updated real-time data, we might estimate that only 8% of the day’s volume has already traded by 11
am.

Before, this wasn’t a problem. We would just make our new decisions based on our new estimates and
try to catch up or slow down as indicated by the newer data. But now, our estimates for the order start
time and end time need to be referenced throughout. If we think, for instance, that 20% of the day’s volume
traded before our start time, that 60% of the day’s volume will trade before our end time, that 30% of the
day’s volume has traded by the current moment, and that 40% will have traded by the end of the next 10
minutes, and we have already traded Y out of X shares, what should we do?

First we want to examine % and compare it to 28:38 = %. If % is greater than this value, we want to
t Y12
X

slow down. If it is less, we want to catch up. Let’s say its less and we immediately buy Z shares so tha
t Y4242 40-20 _ 1
X

is approximately %. Next, let Z’ denote the number of shares such tha is approximately g7=55 = 3-
Then Z' is how many shares we want to buy spaced out of the next 10 minutes. Employing this logic with
the exact approach we described in the prior sections runs into a problem. We described a way to make new
estimates of R(t;) and R(t;+1) at time ¢ based on up-to-date data, but we did not describe a way to also
estimate R(start) and R(end). In fact, since the order start and end times are arbitrary, we would need to
have a general method for re-estimating the entire function R over all values of ¢ at any point in time, based
on the real-time data so far.

Doing this well is a task we leave for future research. For now, we’ll do something simpler: we’ll fix
our estimates of R(start) and R(end) at the time of the order start. These estimates will come from the
default 20-day average. Once these are fixed, our later estimates of R(t) for times ¢ between the start and
end time may end up violating basic sanity conditions. For instance, we could have a situation where our

current estimate for R(t) is less than our fixed estimate for R(start), or where our current estimate for R(¥)
is greater than our fixed estimate for R(end). To enforce sanity, we’ll replace any estimated value r for R(t)
with the maximum of r and R(start) or with the minimum of r and R(end) as necessary. We note that
R(end) > R(start) is guaranteed to hold when both values are estimated from 20-day averages on the same
data set.

There is another minor detail we have glossed over. Technically, we have only described how to derive
estimates for R(t) at times ¢ that fall on 10-minute boundaries, but an order might arrive at a time like 9:42
am. For this, we can linearly interpolate our estimates for 9:40 am and 9:50 am to arrive at an estimate for
9:42 am.

Obviously, there are a lot of things about this approach that can be improved and further explored.
We expect to continue our research on predicting volume curves and matching VWAP prices as closely as
possible, and to iteratively improve our VWAP algo over time. In particular, it would be desirable to make
our methods less reliant on discretized intervals of time and react to real-time data in a more streaming
fashion. One natural way to do this is to fit a continuous function to the prediction data, rather than
stopping at an empirical aggregation.

	Introduction
	Defining the Prediction Problem
	Predicting cumulative relative volume with real time data
	Extension to partial trading days

